Claim Missing Document
Check
Articles

The development of electronic worksheets for students using Live worksheets and GeoGebra to enhance students’ digital literacy Monalisa, Lioni Anka; Kristiana, Arika Indah; Fatahillah, Arif; Hussen, Saddam; Fatimah, Laila Nurul
JINoP (Jurnal Inovasi Pembelajaran) Vol. 10 No. 2 (2024): November
Publisher : University of Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/jinop.v10i2.33688

Abstract

Educational digitalization is characterized by technology-assisted media, leading to improved students’ digital literacy. One of these media is the electronic worksheet for students. An initial observation revealed that learning activities at Public Islamic Senior High School (MAN) in Bondowoso still operationalized conventional books as the sole media. This study aimed to develop electronic worksheets for students using valid, effective, and practical Geogebra-assisted live worksheets, guided by the 4-D model designed by Thiagarajan. This model consisted of four stages, i.e., define, design, develop, and disseminate. Data were collected through observation, tests, and questionnaires. Test questions were used to determine the level of effectiveness, and questionnaires were used for validity and practicality tests. The results revealed very high validity. The effectiveness analysis exhibited an N-Gain percentage of 76%, signifying a satisfactory effectiveness rate. The practicality analysis marked 86.20%, which is classified into a good category. The analysis results corroborated that electronic worksheets for students have proven valid, effective, and practical, demonstrating the potential to improve students' digital literacy.
Pengembangan Perangkat Ajar Berbasis Masalah Untuk Meningkatkan Kemampuan Numerasi Siswa Islamiah, Maulidi Arsih Umaroh; Lestari, Nurcholif Diah Sri; Pambudi, Didik Sugeng; Kurniati, Dian; Kristiana, Arika Indah
Indiktika : Jurnal Inovasi Pendidikan Matematika Vol. 7 No. 1 (2024): Indiktika : Jurnal Inovasi Pendidikan Matematika
Publisher : Universitas PGRI Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31851/indiktika.v7i1.15244

Abstract

Penelitian yang dilakukan memiliki tujuan untuk menciptakan perangkat ajar yang dapat dinyatakan valid, praktis, dan efektif, khususnya pada materi barisan dan deret. Adanya pengembangan perangkat ajar dilakukan untuk peningkatan kemampuan numerasi siswa. Penelitian ini termasuk dalam jenis research dan development dengan pengembangan model 4D dari Thiagarajan. Tahapan 4D dari Thiagarajan mencakup tahap pendefinisian, perancangan, pengembangan, dan penyebaran. Adapun data yang dihimpun memanfaatkan teknik observasi, tes, dan angket. Hasil dari penelitian pengembangan perangkat ajar berbasis masalah tergolong ke dalam kriteria valid, praktis, dan efektif. Tingkat kevalidan dapat dilihat dari nilai kevalidan setiap modul ajar sebesar 4,76, LKPD sebesar 4,77, paket tes sebesar 4,71, dan buku petunjuk sebesar 4,76 (dari 5) yang termasuk pada kategori valid. Nilai kepraktisan diperoleh dari aktivitas siswa sebesar 89,7%, keterlaksanaan pembelajaran sebesar 89,2%, dengan angket respon guru bernilai positif. Nilai keefektifan dilihat dari data hasil belajar diperoleh 81,8% tuntas secara klasikal. Tidak hanya itu, keefektifan dilihat dari kemampuan numerasi dari peningkatan N-Gain yang menunjukkan rerata 0,77 pada kategori tinggi, serta angket respon siswa yang menunjukkan nilai positif. Dapat disimpulkan bahwa pengembangan perangkat ajar berbasis masalah yang valid, praktis, dan efektif dapat meningkatkan kemampuan numerasi siswa.  
Metric Coloring of Pencil Graphs Adawiyah, Robiatul; Pujiyanto, Arif; Kristiana, Arika Indah; Dafik, Dafik; Prihandini, Rafiantika Megahniah; Susanto, Susanto
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 9, No 1 (2025): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v9i1.27242

Abstract

A graph is defined as an ordered pair (V,E), where V is a non-empty set of elements called vertices, and E is a set of edges that are finite and may be empty. Each edge connects two distinct vertices from V(G). Let f:V(G)→{1,2,3,…,k} be a coloring of the vertices of graph G, where two adjacent vertices can be colored with the same color. Considering the set of color classes Π={C_1,C_2,…,C_k}, for a vertex v in G, the color representation of v is a k-vector r(Π)=(d(v,C_1 ),d(v,C_2 ),…,d(v,C_k )),, where d(v,C_1 )=min⁡{d(v,c)∶c∈C_1}. If r(u | Π )≠r(v | Π ) for every two adjacent vertices u and v in G, the coloring is called a metric coloring of G. Thus, it can be concluded that two adjacent vertices u and v can be colored with the same color if their metric code conditions are different. The minimum number of the metric coloring is called as metric chromatic number. The goal of this research is analizing the metric chromatic number of the pencil graph. This graph was chosen because no previous research had been carried out on this graph. The proof begins by determining the lower bound, then determining the upper bound by checking coloring function and checking the metric coloring function and the metric code function of each vertex. In this research, we got the exact value of metric chromatic number of several type of pencil graph.
LOCAL IRREGULARITY VERTEX COLORING OF BICYCLIC GRAPH FAMILIES Kristiana, Arika Indah; Santoso, Aji Mansur; Hussen, Saddam; Wihardjo, Edy; Adawiyah, Robiatul; Dafik, Dafik
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1093-1108

Abstract

The graph in this research is a simple and connected graph with as vertex set and as an edge set. We used deductive axiomatic and pattern recognition method. Local irregularity vertex coloring is defined as mapping as vertex irregular -labeling and where . The conditions for to be a local irregularity vertex coloring, if with as irregularity vertex labeling and for every . The minimum number of colors produced from local irregularity vertex coloring of graph is called chromatic number local irregularity, denoted by . In this research, we analyze about the local irregularity vertex coloring and determine the chromatic number of local irregularity of bicyclic graphs.
Development of Realistic Mathematics Education (RME) Integrating Agricultural Activities to Improve Numeracy Skills Karina Cindy Cahyadewi; Didik Sugeng Pambudi; Nurcholif Diah Sri Lestari; Dian Kurniati; Arika Indah Kristiana
Jurnal Kependidikan: Jurnal Hasil Penelitian dan Kajian Kepustakaan di Bidang Pendidikan, Pengajaran dan Pembelajaran Vol 11, No 1 (2025): March
Publisher : Universitas Pendidikan Mandalika (UNDIKMA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/jk.v11i1.14060

Abstract

This study aims to develop Realistic Mathematics Education (RME) learning tools integrated with agricultural activities, fulfilling the criteria of valid, practical, and effective to improve numeracy skills, particularly in the topics of direct and inverse proportionality. This study used the research and development with the Plomp model, comprising three phases. The first phase, preliminary research, involved 26 teachers and prospective teachers. The second phase, development or prototyping, engaged three experts and three students. The third phase, assessment, was conducted through trial testing with 31 participants in the experimental class and 31 participants in the control class. Data collection techniques included questionnaires, surveys, observations, tests, and interviews. Data processing was conducted using descriptive statistics. The results of the study indicate that the developed RME learning tools integrated with agricultural activities fulfills the criteria of valid, practical, and effective. The validity criteria were achieved with scores of 3.77 for the teaching module, 3.81 for the LKPD, 3.84 for the learning achievement test, and 3.87 for the instruction manual. The practicality criteria were met with a learning implementation rate of 95% (very good), and student activity reaching 84.9% (active). Additionally, student and teacher response questionnaires showed positive feedback, with scores of 95.48% and 100%, respectively. The effectiveness criteria were achieved with an average N-Gain score of 0.65 (moderate) and the experimental class achieved higher average scores than the control class. This study implies that RME integrated with agricultural activities can be recommended for mathematics teachers to support numeracy teaching.
Kemampuan Berpikir Logis Siswa Dalam Menyelesaikan Masalah Peluang Ditinjau dari Self-Regulated Learning Jatmiko, Dhanar Dwi Hary; Putra, Aldi Maulana; Kristiana, Arika Indah; Murtikusuma, Randi Pratama; Adawiyah, Robiatul
JIMAT: Jurnal Ilmiah Matematika Vol 6 No 1 (2025): Januari- Juni 2025
Publisher : Program Studi Pendidikan Matematika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.63976/jimat.v6i1.921

Abstract

Penelitian ini dilakukan dengan tujuan untuk mendeskripsikan kemampuan berpikir logis siswa dalam memecahkan masalah peluang ditinjau dari self-regulated learning. Populasi yang digunakan dalam penelitian ini adalah siswa SMP kelas IX. Sampel penelitian kualitatif yang diambil sebanyak 3 siswa yang memiliki self-regulated learning yang berbeda, yaitu siswa dengan self-regulated learning tinggi, siswa dengan self-regulated learning sedang dan siswa dengan self-regulated learning rendah. Materi yang digunakan dalam penelitian ini adalah materi peluang. Hasil dari penelitian ini menunjukkan bahwa siswa dengan self-regulated learning tinggi memenuhi 3 tahapan dengan 4 indikator berpikir logis. Siswa dengan self-regulated learning sedang memenuhi 3 tahap dengan 4 indikator meskipun pada tahap kemampuan argumentasi masih belum lengkap. Siswa dengan self-regulated learning rendah memenuhi tahapan berpikir runtut namun tidak memenuhi tahapan kemampuan berargumentasi dan menarik kesimpulan.
Enhancing Students' Combinatorial Thinking for Graceful Coloring Problem: A STEM-Based, Research-Informed Approach in ATM Placement Adawiyah, Robiatul; Kristiana, Arika Indah; Dafik, Dafik; Asy’ari, Muhammad Lutfi; Tirta, I Made; Ridlo, Zainur Rasyid; Kurniawati, Elsa Yuli
Tadris: Jurnal Keguruan dan Ilmu Tarbiyah Vol 8 No 1 (2023): Tadris: Jurnal Keguruan dan Ilmu Tarbiyah
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/tadris.v8i1.15176

Abstract

Combinatorial generalization thinking, a component of higher-order thinking skills, encompasses perception (pattern identification), expressions (pattern illustration), symbolic expressions (pattern formulation), and manipulation (combinatorial results application). Implementing a research-based learning (RBL) model with a Science, Technology, Engineering, and Mathematics (STEM) approach can effectively transform students' learning processes, promoting experiential learning through the integration of STEM elements. This study employs a mixed-method research design, combining quantitative and qualitative methodologies, to evaluate the impact of this RBL-STEM model on students' ability to solve graceful coloring problems, hence developing their combinatorial thinking skills. Two distinct classes, one experimental and one control, were analyzed for statistical homogeneity, normality, and independent t-test comparisons. Results indicated a significant post-test t-score difference between the two groups. Consequently, we conclude that the RBL model with a STEM approach significantly enhances students' combinatorial generalization thinking skills in solving graceful coloring problems. As this research provides empirical evidence of the effectiveness of a STEM-based RBL model, educators, and curriculum developers are encouraged to incorporate this approach into their instructional strategies for enhancing combinatorial thinking skills. Future research should consider various contexts and diverse student populations to further validate and generalize these findings.
Senior High School Students’ Lack of Truth-Seeking Behavior in Mathematics Problem Solving Rahmawati, Mira; Kurniati, Dian; Kristiana, Arika Indah; Susanto, Susanto; Alfarisi, Ridho; Osman, Sharifah
Tadris: Jurnal Keguruan dan Ilmu Tarbiyah Vol 9 No 1 (2024): Tadris: Jurnal Keguruan dan Ilmu Tarbiyah
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/tadris.v9i1.21604

Abstract

The objective of this study is to discern the patterns of truth-seeking behaviors among students when tackling mathematics problems involving an unknown universe of discourse. Employing a qualitative descriptive approach, the research encompassed stages including instrument preparation and validation, data collection from two mathematics problems with no specified universal set, subject selection, data analysis, triangulation, and interpretation. The research group consisted of tenth-grade high school students who were considered to have ideal abilities in problem-solving. The instrument used was valid and reliable. The findings reveal that students tend to exhibit a lack of truth-seeking behavior when tackling problem-solving tasks. These behaviors include: (1) verifying the universal set, (2) articulating and defining the universal set, (3) documenting the formulas used to solve problems according to the objectives, (4) outlining the steps employed, (5) working through the questions in accordance with predetermined steps, and (6) evaluating the outcomes obtained to ensure their alignment with the established objectives. Their behavioral patterns unfold as follows: (1) comprehending questions to extract problem details and jotting down pertinent information during the problem identification phase, (2) identifying and documenting the queries posed in questions during the goal-setting stage, (3) utilizing all established information during the strategy implementation phase, and (4) formulating conclusions and conducting result verification during the review and evaluation stage. Future researchers can develop learning methods to familiarize students with truth-seeking behaviors.
Locating Metric Coloring on The Cherry Blossom, Sun Flower and Closed Dutch Windmill Graphs Kristiana, Arika Indah; Khusnul, Agustina Hotimatus; Dafik, Dafik
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.33636

Abstract

Locating metric coloring is a variation of metric coloring in graphs that integrates vertex coloring with the uniqueness of metric representations. In this coloring, each vertex in a connected graph  is assigned a color such that the distance vectors to each color class are distinct for every pair of different vertices. Let  be a coloring function (not necessarily proper). The coloring ccc is called a locating metric coloring if, for any two distinct vertices , their distance vectors , so it is obtained represents the partition of vertices by color classes. Thus, for every vertex, the distance vector  are different. Vertices may share the same color, whether adjacent or not, as long as their metric representations are unique. The smallest number of colors required for such a coloring is called the locating metric chromatic number, denoted  T This study focuses on analyzing locating metric coloring for three specific graphs: the Cherry Blossom graph , the Sun Flower graph , and the Closed Dutch Windmill graph . These graphs were chosen due to the absence of prior research on their locating metric coloring properties. The research method combines pattern recognition and a deductive-axiomatic approach. The proof process begins by determining lower bounds, followed by the construction of upper bounds through coloring function analysis. The resulting locating metric chromatic numbers for each graph are then established.
PEWARNAAN TITIK TOTAL SUPER ANTI-AJAIB LOKAL PADA GRAF PETERSEN DIPERUMUM P(n,k) DENGAN k=1,2 Setyawan, Deddy; Afni, Anis Nur; Prihandini, Rafiantika Megahnia; Albirri, Ermita Rizki; Kristiana, Arika Indah
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 4 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (544.936 KB) | DOI: 10.30598/barekengvol15iss4pp651-658

Abstract

The local antimagic total vertex labeling of graph G is a labeling that every vertices and edges label by natural number from 1 to such that every two adjacent vertices has different weights, where is The sum of a vertex label and the labels of all edges that incident to the vertex. If the labeling start the smallest label from the vertex then the edge so that kind of coloring is called the local super antimagic total vertex labeling. That local super antimagic total vertex labeling induces vertex coloring of graph G where for vertex v, the weight w(v) is the color of v. The minimum number of colors that obtained by coloring that induces by local super antimagic total vertex labeling of G called the chromatic number of local super antimagic total vertex coloring of G, denoted by χlsat(G). In this paper, we consider the chromatic number of local super antimagic total vertex coloring of Generalized Petersen Graph P(n,k) for k=1, 2.
Co-Authors Afni, Anis Nur Agatha, Alvian Bagus Ahmad Aji Aima, Muslihatul Aji, Ahmad Arif Fatahillah Arifandi, Agus Asy’ari, Muhammad Lutfi Aziza, Adinda Putri Azizah, Zakiyah Lina Nur A’yun, Qurrotul Bunga Ayu Desy Permatasari, Bunga Ayu Cahyadewi, Karina Cindy Cici Fitri Lestari, Cici Fitri D Dimas, D D. Dafik Dafik Deddy Setiawan Deddy Setiawan Deddy Setyawan Desi Febriani Putri Devira Ayu Nurandari, Devira Ayu Dewi Santi, Dewi Dewi, Ernita Sukarno Dian Kurniati Didik Sugeng Pambudi Dimas Ardiansyah Ramadhan Dinar Dwi Yuliyanti Dinawati Trapsilasiwi Dliou, Kamal Dwi Agustin Retnowardani Dwi Roby Pramono Dwi Sylvia Hanafi Edy Wihardjo Eka Cahya Lestari, Eka Cahya Eka Wulandari Fauziah, Eka Wulandari Eko Gunariyanto Elsa Yuli Kurniawati Ema Desia Prajitiasari Erica Dian P Ermita Rizki Albirri Ernita Sukarno Dewi, Ernita Fatimah, Laila Nurul Fihrisi, Fathan Hobri I Made Tirta I Made Tirta Intan Nurul Awwaliyah Islamiah, Maulidi Arsih Umaroh Ja'far, Muhammad Jatmiko, Dhanar Dwi Hary Karina Cindy Cahyadewi Karuniaji Fitra Insani Khilyah Munawaroh Khusnul, Agustina Hotimatus Kurniawati, Elsa Yuli Kusbudiono Kusbudiono, Kusbudiono Kusumawati, Nurita Lestari, Deninta Dwi Ayu Lestari, Nurcholif Diah Sri Lioni Anka Monalisa, Lioni Anka Marmono Singgih Miftahul Jannah Mohammad Fadli Rahman Muhammad Gufronil Halim Muhammad Lutfi Asy’ari Muhammad Usaid Hudloir Murtini Murtini, Murtini Niswatul Imsiyah Nur Safrida, Lela Nurbuono, Mousthapaa Nurcholif Diah Sri Lestari Nurina Anggun Ratnaningtyas Nuroeni, Ilmiatun Osman, Sharifah Prahastiwi, Lusi Rizzami Pratiwi, Alfiani Dyah Prihandini, Rafiantika M. Prihandini, Rafiantika Megahniah Pujiyanto, Arif Putra, Aldi Maulana Qurrotul A’yun Rafelita Faradila Sandi Rafiantika Megahnia Prihandini Rahmawati, Mira Randi Pratama Murtikusuma Ratna Dwi Christyanti, Ratna Dwi Retno Nur Khasanah Ridho Alfarisi Ridho Alfarisi, Ridho Ridlo, Zainur Rasyid Rizky Astarina, Rizky Robiatul Adawiyah Robiatul Adawiyah S Suharto S Sunardi S Susanto Saddam Hussen Santoso, Aji Mansur Saputra, Guntari Setiawan, Renal Heldi Siddiqui, M. Kamran Siti Aisyah Slamin Sumani . Surya Indriani Susanto Susanto Susanto, Arnis Budi Susi Setiawani Syahputri, Vika Thoyibah, Fifi Tika Nurpitasari Titik Sugiarti Titin Kartini Toto Bara Setiawan Umi Azizah Anwar WIHARDJO, EDY Wirdah Pramita N Yanuarsih, Elly Zainur Rasyid Ridlo