Claim Missing Document
Check
Articles

Found 40 Documents
Search

PENERAPAN DESAIN KAOS UNTUK MENUNJANG PARIWISATA DI CV MERCHINDO SERENGAN SURAKARTA Edi Kurniadi; Margana Margana; Slamet Supriyadi; Estetika Mutiaranisa Kurniawati
Adi Widya : Jurnal Pengabdian Masyarakat Vol 5 No 1 (2021): ADIWIDYA
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33061/awpm.v5i1.4448

Abstract

Surakarta is one of the cities in Central Java which is known as the city of batik and a tourist destination area which is supported by tourist attractions in the form of various historical sites that have integrated with the culture of the local community. The arrival of tourists to various tourist destinations in Surakarta in addition to enjoying existing tourist objects is also to get souvenirs that have local uniqueness. Apart from hunting batik for souvenirs, many also hunt for distinctive T-shirts, especially for young tourists, because they are inspired like traveling to Bali and Jogja. To provide a new alternative in the form of t-shirts with designs that have local uniqueness, it is planned to partner with CV. Asta Saka Semesta which produces t-shirts, convection, and merchandising. Service methods in the form of training and assistance in making innovative designs for tourist souvenirs; lectures to increase knowledge about survival strategies in business; expansion of marketing through participation in exhibitions; documentation of product samples and procurement of shelves for product documentation that has been produced. The results are 5 innovative designs, namely the design of a tourist attraction patterned t-shirt combined with classic batik motifs, as well as the production process for tourist souvenirs, 2 t-shirt designers have increased their knowledge and skills in making designs to meet the needs of tourists.
DEKOMPOSISI LEVI ALJABAR LIE AFFINE FROBENIUS aff(2, R) EDI KURNIADI
Jurnal Matematika UNAND Vol 10, No 3 (2021)
Publisher : Jurusan Matematika FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmu.10.3.229-235.2021

Abstract

Dalam artikel ini dipelajari aljabar Lie affine Frobenius aff(2, R) berdimensi 6. Aljabar Lie aff(2, R) dapat didekomposisi menggunakan dekomposisi Levi menjadi aljabar Lie linear khusus semisederhana sl(2, R) berdimensi 3, subaljabar Lie komutatif R ⊂ R2 berdimensi 2, dan split torus T berdimensi 1 sedemikian sehingga aff(2, R) = sl(2, R) ⊕ R ⊕ T. Karena aljabar Lie sl(2, R) semisederhana maka bracket Lie-nya dapat dinyatakan sebagai [sl(2, R), sl(2, R)] = sl(2, R). Selanjutnya, misalkan g = R⊕T sehingga aff(2, R) = sl(2, R) ⊕ g. Diperoleh bahwa [sl(2, R), g] ⊆ g dan [g, g] ⊆ g. Dalam hal ini, g adalah solvable radical dari aff(2, R).Kata Kunci: Aljabar Lie affine, Aljabar Lie Semisederhana, Dekomposisi Levi
Symplectic Form yang Berkaitan Dengan Satu-form Suatu Aljabar Lie Berdimensi Rendah Edi Kurniadi
Journal of Mathematics: Theory and Applications Vol 6 No 1 (2024): Volume 6, Nomor 1, 2024
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/jomta.v6i1.3096

Abstract

In this paper, we study symplectic form on low dimensional real Lie algebra. A symplectic form is very important in classifying of Lie algebra types. Based on their dimension and certain conditions, there are two types of Lie algebras. A lie algebra with odd dimension endowed with one-form such that is called a contact Lie algebra, while a Lie algebra whose dimension is even and it is endowed with zero index is called a Frobenius Lie algebra. The research aimed to give explicit formula of a symplectic form of low dimensional contact Lie algebras and Frobenius Lie algebras. We established that a one-form associated to simplectic form determine a type of a Lie algebra whether a contact or a Frobenius Lie algebras.To clearer the main results, we give some examples of one-form and symplectic form of Frobenius and contact Lie algebras.
PENINGKATAN KUANTITAS PRODUKSI DAN KUALITAS DESAIN BATIK SERTA PENAMBAHAN PERALATAN DI PERUSAHAAN BATIK KARTIKA TIRTOMOYO WONOGIRI KURNIADI, EDI; Sumartono, Basuki; Wahida , Adam
Adi Widya : Jurnal Pengabdian Masyarakat Vol 8 No 2 (2024): Adi Widya: Jurnal Pengabdian Masyarakat
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33061/awpm.v8i2.9981

Abstract

The service partner is Mr. Aris Supriyadi's Batik Kartika Business, located in Bugel Hamlet, Tirtomoyo Village, Tirtomoyo District, Wonogiri Regency, which is facing the main problems of: 1) Low product innovation due to the lack of maximum development of batik designs that can contribute to competitiveness among similar products, 2) Lack of complete equipment that supports increasing the quantity and quality of production. The implementation of this activity program, using a mentoring and training approach; In this context, the training in question is to provide some knowledge of the batik production process, the development of designs that have local distinctiveness for seven tourist attractions, and transfer of experience in exhibiting regional superior products, especially batik as a promotional event and marketing improvement. The results of the activity are an increase in knowledge about design as one of the determinants of product competitiveness, and crafters have improved skills in making designs with local potential sources of ideas. Partners have been given additional equipment in the form of stoves for stamped batik, stamp tables, and equipment for boiling/removing wax in the form of kenceng. Improved marketing through assistance in the Wonogiren Batik Festival to commemorate the 82nd Anniversary of Wonogiri Square.
Struktur Aljabar Koszul pada Aljabar Lie M_(3,1) (R)⋊〖gl〗_3 (R) Hafizhah, Nur; Kurniadi, Edi; Carnia, Ema
PYTHAGORAS Jurnal Pendidikan Matematika Vol 17, No 1: June 2022
Publisher : Department of Mathematics Education, Faculty of Mathematics and Natural Sciences, UNY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/pythagoras.v17i1.39713

Abstract

Dalam penelitian ini dipelajari aljabar Lie affine aff(3) berdimensi 12 yang merupakan jumlah semi langsung dari ruang vektor matriks berukuran 3x1 dan aljabar Lie matriks berukuran 3x3 . Tujuan penelitian ini adalah untuk membuktikan eksistensi dan struktur aljabar koszul pada aljabar Lie aff(3). Aljabar Lie tersebut adalah aljabar Lie Frobenius. Oleh karena itu, terdapat suatu fungsional linear yang mengakibatkan nilai fungsional linear pada  matriks strukturnya tidak sama dengan nol. Fungsional linear yang demikian ini disebut fungsional Frobenius. Dalam penelitian ini diberikan juga bagaimana mendapatkan matriks struktur, menghitung determinannya serta memilih fungsional Frobenius yang tepat. Hasil yang diperoleh dalam penelitian ini adalah rumus eksplisit struktur aljabar koszul pada aljabar Lie affine berdimensi 12 melalui induksi pada bentuk simplektik dari fungsional Frobeniusnya. Sebagai bahan diskusi untuk penelitian selanjutnya, hasil yang diperoleh dapat dikembangkan untuk menentukan struktur aljabar koszul pada aljabar Lie affine berdimensi n(n+1). Structure of Koszul Algebra in Lie Algebra M_(3,1) (R)⋊〖gl〗_3 (R)AbstractIn this research, we study the affine Lie algebra aff(3) of 12 dimension which is the semi-direct sum of the vector space of a matrix of 3x1 and Lie algebra of a matrix of 3x3.  The research aims to prove the existence and structure of koszul algebras on the affine Lie algebra aff(3) . Since its Lie algebra is Frobenius then there exists a linear functional whose values in the matrix structure are not equal to zero.  Such a linear functional is called a Frobenius functional. Furthermore, in this study, it is also given how to obtain the structure matrix, to calculate its determinants, and to choose the right Frobenius functional. The results obtained in this study are explicit formulas for the structure of the koszul algebra on 12-dimensional Lie affine algebra through induction in the symplectic form of its Frobenius functional. As a discussion material for further research, the results obtained can be developed to determine the structure of koszul algebra in affine Lie algebra of dimension n(n+1).
Family Background, Entrepreneurship Education, And Creativity In Supporting Entrepreneurship Intention Cahyani, Rusnandari Retno; Riani, Asri Laksmi; Kurniadi, Edi; Paningrum, Destina
Asia Pacific Journal of Management and Education (APJME) Vol 1, No 1 (2018): November 2018
Publisher : AIBPM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (246.812 KB) | DOI: 10.32535/apjme.v1i1.101

Abstract

Family business has a key role in economic growth and labor. Entrepreneurship education(EE) is any activity that aims to inculcate the mindset or mindset about entrepreneurship, fostering the intention, attitude and competence of a person in developing his potential by realizing creative and innovative behavior. Objectives to be achieved in research are (1)to analyze the influence of family background variables on entrepreneurship intention. (2)Analyze the influence of entrepreneurship education from variable to entrepreneurship intention. (3) Analyze the influence of creativity variable on entrepreneurship intention. (4)To analyze the effect of family background variables, entrepreneurship education and creativity together on the intention of entrepreneurship. This research is a descriptive research using quantitative approach. The location of this research is at Sahid University of Surakarta with total of 100 respondents. Data collection used in this research is questionnaire, observation and literature. The results obtained that the three independent variables are family background, entrepreneurship education and creativity positively influences entrepreneurship intention. Hypothesis testing using t test shows that all independent variables have significant less than 0.05. Then through the F test known that the three independent variables proved to have a significant influence together on entrepreneurship intention. The authors suggest that future research is needed approaches in Entrepreneurship education for others college students or university.
Levi Decomposition of Frobenius Lie Algebra of Dimension 6 Henti, Henti; Kurniadi, Edi; Carnia, Ema
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 3 (2022): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i3.15656

Abstract

In this paper, we study notion of the Lie algebra  of dimension 6. The finite dimensional Lie algebra can be expressed in terms of decomposition between Levi subalgebra and the maximal solvable ideal. This form of decomposition is called Levi decomposition. The work aims to obtain Levi decomposition of Frobenius Lie algebra of dimension 6. To achieve this aim, we compute Levi subalgebra and the maximal solvable ideal (radical) of  with respect to its basis. To obtain Levi subalgebra and the maximal solvable ideal, we apply literature reviews about Lie algebra and decomposition Levi in Dagli result. For future research, decomposition Levi for higher dimension of Frobenius Lie algebra  is still an open problem.
Karakteristik Aljabar Lie Nonsolvable aff(2) Kurniadi, Edi; Kartiwa, Alit
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 20 No. 1 (2023)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2023.v20.i1.16360

Abstract

Dalam artikel ini, dipelajari tentang aljabar Lie affine berdimensi 6 yang sekaligus merupakan aljabar Lie Frobenius. Terdapat fungsional linear atau 1-form yang mengakibatkan aljabar Lie affine merupakan aljabar Lie Frobenius. Tujuan penelitian ini adalah untuk membuktikan bahwa fungsional linear tertentu yang dipilih dapat dihitung secara eksplisit dan berkorespondensi dengan struktur 2-form. Diberikan juga pemetaan antara aljabar Lie affine dengan ruang dualnya yang juga didefinisikan berkaitan dengan 2-form-nya. Hasil yang diperoleh menunjukkan eksistensi fungsional linear tersebut mengakibatkan adanya skew-symmetric nondegenerate closed 2-form yang merupakan turunan pertama dari fungsional linearnya. Selanjutnya, dihitung juga elemen utama dari aljabar Lie affine berdimensi enam. Kata kunci : Aljabar Lie Affine, Aljabar Lie Frobenius, Fungsional Linear, 2-Form, Ruang Vektor Dual.
Aransemen Lagu Widodari Karya Denny Caknan sebagai Media Pembelajaran Musik Keroncong di SMK Negeri 8 Surakarta Dellavani, Charitra Yulia Dien Wardihastri; Mulyanto, Mulyanto; Kurniadi, Edi
Resital: Jurnal Seni Pertunjukan Vol 24, No 2 (2023): Agustus 2023
Publisher : Institut Seni Indonesia Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24821/resital.v24i2.8767

Abstract

SMK Negeri 8 Surakarta, a high-school level formal educational institution, focuses on preserving the values of local wisdom in globalization era through art education. One of the methods is strengthening character education through Keroncong music subjects. In this research, the action was done through the elaboration of local wisdom values in Keroncong music by arranging a popular song among millennials entitled Widodari by Denny Caknan. The objective of this research is examining the relationship between the arrangement of Widodari song by Denny Caknan as a medium for learning Keroncong music to preserve the values of local wisdom and as a form of character education at SMK Negeri 8 Surakarta. In this research, the author implemented descriptive qualitative approach using Miles and Huberman's interactive model as a data analysis technique. It included data collection, data reduction, data display, and conclusions: drawing/verifying. Through the arrangement of Widodari songs as a medium for learning Keroncong music, the results reveal that the values of local wisdom in Keroncong music are aesthetic values, mutual aid values, and tolerance values. All of them can be conveyed through musical aspects, such as harmony and ensemble play of each Keroncong instrument.SMK Negeri 8 Surakarta sebagai lembaga pendidikan formal memiliki konsentrasi dalam pelestarian nilai-nilai kearifan lokal di tengah arus globalisasi melalui pendidikan seni, salah satunya dengan menguatkan pendidikan karakter melalui mata pelajaran musik keroncong. Upaya yang dilakukan yaitu dengan mengelaborasikan nilai-nilai kearifan lokal dalam Musik Keroncong dengan mengaransemen lagu yang popular dikalangan milenial, yaitu lagu Widodari karya Denny Caknan sebagai media pembelajaran. Berdasarkan hal tersebut, artikel ini berfokus untuk mencermati relasi antara aransemen lagu Widodari karya Denny Caknan sebagai media pembelajaran musik keroncong dengan upaya pelestarian nilai-nilai kearifan lokal dan pendidikan karakter di SMK Negeri 8 Surakarta. Penelitian ini dilakukan menggunakan pendekatan kualitatif deskriptif, dengan model interaktif Miles & Huberman sebagai teknik analisis data yang memiliki komponen data collection, data reduction, data display, dan conclusions: drawing/verifying. Melalui aransemen lagu Widodari sebagai media pembelajaran musik keroncong, diperoleh hasil bahwa nilai-nilai kearifan lokal yang ada dalam musik keroncong seperti nilai estetika, nilai gotong royong, dan nilai toleransi dapat tersampaikan secara baik melalui aspek musikal, seperti harmoni dan permainan ansambel dari masing-masing instrumen keroncong.
Aplikasi Algoritma Euclidean dalam Produksi Jagung di Pulau Jawa Setiawan, Ade Ripki; Kurniadi, Edi; Triska, Anita; Sylviani, Sisilia
Mathematical Sciences and Applications Journal Vol. 5 No. 1 (2024): Mathematical Sciences and Applications Journal
Publisher : Department of Mathematics, Faculty of Science and Technology Universitas Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22437/msa.v5i1.38080

Abstract

Corn farming on the island of Java plays a crucial role in meeting the nation's food needs. However, variations in land conditions across provinces in Java result in differing production levels. This disparity affects the supply of corn in the market, and the selling price often does not align with farmers' expectations. Therefore, this article aims to determine the optimal timing for distributing corn, particularly on the island of Java, using the Euclidean algorithm. The Euclidean algorithm is used to calculate the greatest common divisor (gcd), which in turn is applied to determine the least common multiple (lcm). The lcm results can serve as a reference for identifying the best time to sell corn to prevent price declines. Additionally, a comparison of production levels across provinces is presented to help corn farmers understand when and where to distribute their produce to achieve maximum profit.