Claim Missing Document
Check
Articles

PERANCANGAN APLIKASI PENCARI MASJID MENGGUNAKAN GLOBAL POSITIONING SYSTEM (GPS) PADA PLATFORM ANDROID Prastowo, Pramuko Tri; Satoto, Kodrat Iman; Isnanto, Rizal
Transient: Jurnal Ilmiah Teknik Elektro TRANSIENT, VOL. 1, NO. 4, DESEMBER 2012
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (246.719 KB) | DOI: 10.14710/transient.1.4.289-293

Abstract

Abstrak Seringkali umat Islam kesulitan mencari lokasi masjid untuk beribadah, terutama jika sedang berada di daerah asing. Untuk memudahkan orang untuk mencari masjid terdekat, perlu dibuat sebuah aplikasi untuk memudahkan pencarian masjid terdekat yang dimaksudkan untuk menghemat waktu perjalanan. Ponsel berbasis Android memiliki fitur Global Positioning System (GPS) yang dapat digunakan untuk memberikan informasi geolokasi terkini pengguna. Platform Android juga dapat diintegrasikan dengan Google Maps API yang menawarkan kemudahan dalam membangun aplikasi yang memerlukan data geolokasi dan kemampuan dalam menyediakan peta yang cukup lengkap. Langkah pertama dalam penelitian ini adalah melakukan studi literatur tentang Android, GPS, dan Google Maps API. Langkah kedua, dilakukan perancangan aplikasi dengan pemodelan Unified Modeling Language (UML). Langkah terakhir, dilakukan implementasi dengan menggunakan bahasa pemrograman Java. Berdasarkan hasil pengujian, aplikasi ini dapat digunakan untuk menampilkan lokasi terkini pengguna dan lokasi masjid-masjid yang terdekat dengan pengguna. Jarak maksimum masjid yang akan ditampilkan dalam aplikasi dapat diatur sendiri oleh pengguna. Akurasi GPS yang dipergunakan berkisar antara 0,44 meter hingga 16,14 meter, sedangkan akurasi provider Network berkisar antara 27,02 meter hingga 938,63 meter. Secara keseluruhan, aplikasi ini memberikan kemudahan bagi pengguna untuk mencari lokasi masjid terdekat sehingga dapat menghemat waktu perjalanan. Kata Kunci : Masjid, Peta, Geolokasi, Google Maps API, Android, GPS. Abstract Muslims often find it difficult to locate the mosque for worship, especially if they are in an unfamiliar area. To make it easier to locate the nearest mosque, an application which capable to locate the nearest mosque should be made, which is meant to save traveling time. Android-based smartphone has Global Positioning System (GPS) feature which can be used to give the user current geolocation information. The Android platform can also be integrated with the Google Maps API which offers the ease of developing an application that requires geolocation data and the ability to provide a fairly complete map. The first step taken in this research is to study literature about Android, GPS, and Google Maps API. The second step is to design application with the Unified Modeling Language (UML). The last step, implementation is done by using the Java programming language. Based on the test results, this application can be used to display the user's current location and the location of the nearest mosques according to the user’s location. The maximum distance of the mosques which will be displayed in the application can be set by the user. The GPS’ accuracy ranges from 0,44 m to 16,14 m, whilst Network provider’s accuracy ranges from 27,02 m to 938,63 m. Overall, this application eases user to locate the nearest mosque so that the user can save his/her traveling time. Key Word : Mosque, Map, Geolocation, Google Maps API, Android, GPS.
Aplikasi Bergerak dengan Java J2ME untuk Pelaporan Penyelidikan Epidemiologi Penyakit Demam Berdarah Iman Satoto, Kodrat; Isnanto, Rizal; Aditya, Firdaus
Jurnal Sistem Komputer Vol 2, No 1 (2012)
Publisher : Jurnal Sistem Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jsk.v2i1.27

Abstract

Nowadays, reporting system of Dengue Hemorrhagic Fever Epidemiologic investigation (PE DBD) in Health Department uses manual recording system. It takes more times for printing as well as for reading. This inefficient system will affect a longer decision making to handle the spread of dengue fever in Semarang. Therefore, a research is needed to overcome these problems, i.e. by developing mobile application embedded in cell phone and web application as administrator to facilitate the data management transmitted. There are several steps taken in this research. First, analyzing the existing system in Health Department. Second, designing system with Unified Modeling Language (UML). Third, developing an application using Java J2ME for client and Java J2EE for server as programming language and MySQL as database server. The last step is application testing.. Based on research results, it can be concluded that this application has been able to facilitate and accelerate the process of reporting the current PE dengue disease. Users consist of officers of PE as a user of mobile applications for data entry operator of PE DBD and P2P as web application server administrator. Through a web application, administrators can print data input PE of phone listed in the form of dynamic HTML.Permalink: http://jsiskom.undip.ac.id/index.php/jsk/article/view/27
Sistem Pengenalan Iris Mata Berdasar Tekstur Menggunakan Ekstraksi Ciri Energi pada Alihragam Wavelet Haar Isnanto, R. Rizal; Santoso, Imam; Dwi Prihartono, Teguh; Sri Widodo, Thomas; Suhardjo, Suhardjo; Susanto, Adhi
Jurnal Sistem Komputer Vol 2, No 1 (2012)
Publisher : Jurnal Sistem Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jsk.v2i1.28

Abstract

Human iris has a very unique pattern which is different for each person so it is possible to use it as a basic of biometric recognition. To identify texture in an image, texture analysis method can be used. There is some texture analysis method, one of them is wavelet that extract the feature of image based on energy. The texture analysis using energy features which are in the wavelet transform. Based on that reason, in this research made a simulation to identified eyes iris based on Haar wavelet transform. First, the image of iris is segmented from eye image then enhanced with histogram equalization. The method used to extract the feature is Haar wavelet transform. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Four experiments are done in the research, those are influence of number of sample in database, influence of Haar wavelet transform level, influence of different input image format and testing on eye images which are not in database. As the result, the highest accuration is achieved using Haar wavelet transform level 4 with two samples iris image saved is 85,58%. The lowest accuration is achieved using Haar wavelet transform level 1 with one sample iris image saved is 65,27%. Then, from the test result for the influence of different input image format, the .bmp input image format is better than .jpg input image format. Whereas, from the test result for eye images which are not in database with threshold 2,3653, the recognition level is 81,48%Permalink: http://jsiskom.undip.ac.id/index.php/jsk/article/view/28
IDENTIFIKASI RETINA MATA MENGGUNAKAN JARAK EUCLIDEAN DENGAN PENCIRIAN MATRIKS KOOKURENSI ARAS KEABUAN (GRAY LEVEL CO-OCCURRENCE MATRIX-GLCM) Widiasmoro, Andi; Isnanto, R Rizal; Suseno, Jatmiko Endro
Jurnal Sistem Komputer Vol 6, No 1 (2016)
Publisher : Jurnal Sistem Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jsk.v6i1.105

Abstract

Retinal vascular pattern is very unique and has very good pattern differences between one individual and the others, so it can be argued that retinal image can be one of the best in the world of biometrics. This research create a system that can recognize retinal images using Gray Level Co-occurrence Matrix (GLCM) feature extraction technique and normalized Euclidean distance measurement techniques, which the image of the sample used was a normal retinal image of Messidor dataset. Based on testing of GLCM parameters (Angular Second Moment, Contrast, Entropy, and Inverse Difference Moment), distance, angle, and the number of images in the database, the largest accuracy of retinal image recognition is equal to 85% at the time of testing by using 45° angle, distance of 5 pixels, and an image in the database.
PERANCANGAN APLIKASI PENGENALAN ALAT-ALAT LITURGI MENGGUNAKAN AUGMENTED REALITY BERBASIS MOBILE Pertiwi, Rahayu Putri; Nurhayati, Oki Dwi; Isnanto, Rizal
JURIKOM (Jurnal Riset Komputer) Vol 6, No 6 (2019): Desember 2019
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.881 KB) | DOI: 10.30865/jurikom.v6i6.1738

Abstract

Catholicism, is one of the recognized religions in Indonesia. Today many Catholics do not know about their own means of worship. Therefore it is necessary to conduct a study to create an Android application with Augmented Reality technology as an alternative introduction to liturgical devices. The development of this application uses the Multimedia Development Life Cycle. This application will display 3D object visualization of liturgical instruments along with a Description Panel and buttons for sounding, and allows users to zoom in, zoom out and move objects. The application is built using Blender3D, Unity3D, and Vuforia SDK.  Results of application testing are the function keys on the application 100% successful. The ideal detection results are obtained in a room with a light intensity of at least 38 lux and a maximum of 180 lux, a distance of 15-30 cm, and an angle of 60o-90o. Testing the detection of barrier markers, the ideal result of 100% success is shown if the marker is not blocked by anything.
Sistem Manajemen Potensi Anak Sejak Dini (SIMPONI) Berdasarkan Teori Kecerdasan Majemuk Menggunakan Metode Simple Additive Weighting (SAW) Mustafa, Mustafa; Mustafid, Mustafid; Isnanto, R Rizal
Infotek : Jurnal Informatika dan Teknologi Vol 3, No 2 (2020): Infotek : Jurnal Informatika dan Teknologi
Publisher : Fakultas Teknik Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (832.538 KB)

Abstract

Program pembelajaran untuk anak usia Sekolah Dasar (SD) akan lebih mudah disampaikan apabila menggunakan strategi pembelajaran yang sesuai dengan gaya belajar atau profil kecerdasan majemuk anak. Identifikasi profil kecerdasan majemuk anak dapat dilakukan melalui proses observasi orang tua dan guru sekolah terhadap kegiatan sehari-hari anak. Profil kecerdasan majemuk anak bersifat dinamis sehingga perlu dilakukan identifikasi profil kecerdasan majemuk secara berkala minimal satu tahun sekali. Penelitian ini bertujuan untuk mengimplementasikan metode Simple Additive Weight (SAW) pada Sistem Manajemen Potensi Anak Sejak Dini (SIMPONI) berdasarkan Teori Kecerdasan Majemuk. Metode Simple Additive Weighting (SAW) digunakan untuk perhitungan penentuan rangking profil Kecerdasan Majemuk anak. Hasil penelitian ini adalah sistem informasi manajemen identifikasi Profil Kecerdasan Majemuk dengan pengolahan data menggunakan metode Simple Additive Weighting (SAW). Keunggulan produk yang dihasilkan penelitian ini adalah orang tua dapat melakukan identifikasi profil kecerdasan majemuk anak secara lebih mudah dibandingkan model sebelumnya yang menggunakan metode wawancara yang mengharuskan tatap muka.DOI : 10.29408/jit.v3i2.2250
Classification of Traditional Batik Motifs in Central Java using Gabor Filter andBackpropagationNeural Network Isnanto, R Rizal; Triwiyatno, Aris
Scientific Journal of Informatics Vol 7, No 2 (2020): November 2020
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v7i2.26215

Abstract

Batik has a variety of varied motifs, each region in Indonesia has certain characteristics on batik motifs. Based on literature studies theuse of backpropagation neural network methods to recognize complex patterns has a satisfactory rate of success. The purpose of this research is to develop and apply neural networks that are fast, precise and accurate to classify batik designs and patterns. Types of batik motifs typical of Central Java that are used include; Truntum from Solo, Warak Ngendhog from Semarang, Sekar Jagad from Lasem, Burnt from Pati, and Jlamprang from Pekalongan. The image first undergoes RGB color feature extraction based on mean values of R, G, and B, and Gabor filter texture characteristics. The tests were carried out using 90 batik images, 60 batik images for training data and 30 batik images for testing data. The results of the study concluded that the best parameter settings were, the number of hidden layer 30 neurons in the first layer and 15 in the second layer, with 6 input layers and 5 output layers. Gabor filter with 90º orientation angle and wavelength 4 become the best combination in this study. From the results of training and testing results obtained an average accuracy of 93.3% in all batik classes in Central Java.
Classification of Traditional Batik Motifs in Central Java using Gabor Filter andBackpropagationNeural Network Isnanto, R Rizal; Triwiyatno, Aris
Scientific Journal of Informatics Vol 7, No 2 (2020): November 2020
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v7i2.26215

Abstract

Batik has a variety of varied motifs, each region in Indonesia has certain characteristics on batik motifs. Based on literature studies theuse of backpropagation neural network methods to recognize complex patterns has a satisfactory rate of success. The purpose of this research is to develop and apply neural networks that are fast, precise and accurate to classify batik designs and patterns. Types of batik motifs typical of Central Java that are used include; Truntum from Solo, Warak Ngendhog from Semarang, Sekar Jagad from Lasem, Burnt from Pati, and Jlamprang from Pekalongan. The image first undergoes RGB color feature extraction based on mean values of R, G, and B, and Gabor filter texture characteristics. The tests were carried out using 90 batik images, 60 batik images for training data and 30 batik images for testing data. The results of the study concluded that the best parameter settings were, the number of hidden layer 30 neurons in the first layer and 15 in the second layer, with 6 input layers and 5 output layers. Gabor filter with 90º orientation angle and wavelength 4 become the best combination in this study. From the results of training and testing results obtained an average accuracy of 93.3% in all batik classes in Central Java.
Herb Leaves Recognition using Gray Level Co-occurrence Matrix and Five Distance-based Similarity Measures R. Rizal Isnanto; Munawar Agus Riyadi; Muhammad Fahmi Awaj
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 3: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (931.813 KB) | DOI: 10.11591/ijece.v8i3.pp1920-1932

Abstract

Herb medicinal products derived from plants have long been considered as an alternative option for treating various diseases.  In this paper, the feature extraction method used is Gray Level Co-occurrence Matrix (GLCM), while for its recognition using the metric calculations of Chebyshev, Cityblock, Minkowski, Canberra, and Euclidean distances. The method of determining the GLCM Analysis based on the texture analysis resulting from the extraction of this feature is Angular Second Moment, Contrast, Inverse Different Moment, Entropy as well as its Correlation.  The recognition system used 10 leaf test images with GLCM method and Canberra distance resulted in the highest accuracy of 92.00%. While the use of 20 and 30 test data resulted in a recognition rate of 50.67% and 60.00%.
IDENTIFIKASI SIDIK JARI MENGGUNAKAN TEKNIK PENCOCOKAN TEMPLATE TAPIS GABOR R. Rizal Isnanto; Achmad Hidayatno; Muhammad Nur Hadi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 5, No 1: April 2007
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v5i1.1329

Abstract

Sistem autentikasi menggunakan pola sidik jari telah terbukti akurasinya sebagai identifikasi seseorang. Identifikasi pola sidik jari secara signifikan oleh mata sulit untuk dilakukan. Pada penelitian ini dirancang sistem yang dapat mengenali sebuah citra sidik jari dan mengenali siapa pemiliknya. Langkah-langkah pengembangan aplikasinya meliputi: akuisisi data, segmentasi, ekstraksi ciri, dan identifikasi. Metode untuk ekstraksi ciri citra sidik jari menggunakan tapis Gabor. Tapis ini akan menapis data citra yang dimasukkan menjadi beberapa template, kemudian akan dibandingkan dengan template yang sudah tersimpan di basisdata. Pemilihan template dilakukan dengan membandingkan vektor ciri dari template tersebut dengan template pada basisdata. Template yang memiliki jarak Euclidean minimum dipilih sebagai sidik jari yang dikenali. Pada penelitian ini digunakan 160 citra sidik jari yang terdiri atas 15 responden  untuk basisdata dengan tiap responden diambil 10 data dan ditambah 10 citra di luar responden tersebut. Dari penelitian diperoleh kesimpulan bahwa sistem memiliki prosentase tingkat keberhasilan dalam mengenali sidik jari sebesar 91,333% untuk pengujian tanpa data di luar responden dan tanpa nilai ambang; serta 90,625% untuk pengujian dengan menyertakan data di luar responden dan dengan nilai ambang 51,355.
Co-Authors Abdul Syakur Achmad Chaerodin Achmad Hidayatno Achmad Hidayatno Ade Riyantika Dewi Adhi Susanto Adi Mora Tunggul Adi Wijaya Adian Fatchur Rochim Adrian Putranda Rispurwadi Agus Suprihanto Agustini, Eka Puji Ahmad Ramdhani Ajub Ajulian Zahra Macrina Alan Prasetyo Rantelino Albert Ginting An'im Almiktad Andhika Dewanta Andhika Hanifa Naufaliawan Andino Maseleno Anton Satria Prabuwono Ardianto Eskaprianda Ari Muhardono Arianto, Mufid Aris Puji Widodo Aris Sugiharto Aris Triwiyatno Astrid Aprillini Aulia Nastiti Aziz, RZ. Abdul Bhutra, Yuvraj Budi Warsito Catur Edi Widodo Chauhan, Rahul Damar Wicaksono Danang Respati Setyabudi Deddy Sucipta Syahril Dewi, Deshinta Arrova Dewi, Rany Puspita Dhody Kurniawan Dian Kurnia Widya Buana Dilan Arya Sujati Dimas Robby Firmanda Dini Indriyani Putri Donni Widagdo Dwi Novianto Eko Didik Widianto Eko Winarto Erizco Satya Wicaksono Ervin Adhi Cahyanugraha Fatima Setyani Ferry Dwi Setiyawan Firdaus Aditya GALIH WICAKSONO Gilang Aditya Pamungkas Handayani, Sri Hardiyanto Hardiyanto Hayu Andarwati Hefmi Fauzan Imron Hendy Cahya Lesmana Hilal Afrih Juhad Ike Pertiwi Windasari Imaduddin Amrullah Muslim Imam Tahyudin Irham Fa'idh Faiztyan Iwan Purwanto Jatmiko Endro Suseno Julianto, Dewa Rizki Rahmat Kataria, Yachi Kurniawan Teguh Martono Kurniawan, Tri Basuki Kusworo Adi Lia Lidya Roza Liga Filosa M Said Hasibuan Maizary, Ary Maman Somantri Martin Clinton Tosima Manullang Maulana Muhammad Iqbal Misik Puspajati Nurmadjid Saputri Mona Pradipta Hardiyanti Muh. Udka Muhamad Taopik Gibran Muhammad Fahmi Awaj Muhammad Kautsar Muhammad Nur Hadi Munawar Agus Riyadi Mustafa, Mustafa Mustafid Mustafid Nahdi Saubari Nanang Sulaksono, Nanang Nazwan, Nazwan Neneng Neneng Nur Setyo Permatasasi Putri W Nurhayati, Oki Dwi Nurul Arifa Oky Dwi Nurhayati Pertiwi, Rahayu Putri Prakasa, Fawwaz Bimo Pramuko Tri Prastowo Prima Widyaningrum PUJI LESTARI Qoriani Widayati Rachel Chrysilla Tijono Refika Khoirunnisa Reza Najib Hidayat Rinta Kridalukmana Rinta Kridalukmana Rivaldi MHS Riyana Putri, Fayza Nayla Rizaldi Habibie Rizaldy Khair Rizky Gelar Maliq Rosdelima Hutahaean Roza, Lia Lidya Rozak, Rofik Abdul Ruli Handrio Santoso, Imam Saptian, Fiega Adhi Sapto Nisworo Sasongko, Cornelius Damar Satya Arisena Hendrawan Setiawan, Annas Sri Lestari Sri Sumiyati Sri Widodo, Thomas Suhardjo Suhardjo Sumardi . Talitha Almira Taqwa Hariguna Teguh Dwi Prihartono Tikaningsih, Ades Toni Wijanarko Adi Putra Triloka, Joko Tyas Panorama Nan Cerah Ucky Pradestha Novettralita Ufan Alfianto Unaliya, Maitri Waluyo Nugroho Waluyo Wandri Okki Saputra Wibaselppa, Anggawidia Widi Puji Atmojo Widiasmoro, Andi Wijaya, Elang Pramudya Yatim, Ardiyansyah Saad Yeh, Ming-Lang Yenita Dwi Setiyawati Yessy Kurniasari Yongki Yonatan Marbun Yudi Eko Windarto Yunus Anis, Yunus