p-Index From 2020 - 2025
7.566
P-Index
Claim Missing Document
Check
Articles

A STUDY ON RANKING METHOD IN RETRIEVING WEB PAGES BASED ON CONTENT AND LINK ANALYSIS: COMBINATION OF FOURIER DOMAIN SCORING AND PAGERANK SCORING Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2047.368 KB) | DOI: 10.12962/j24068535.v7i1.a57

Abstract

Ranking module is an important component of search process which sorts through relevant pages. Since collection of Web pages has additional information inherent in the hyperlink structure of the Web, it can be represented as link score and then combined with the usual information retrieval techniques of content score. In this paper we report our studies about ranking score of Web pages combined from link analysis, PageRank Scoring, and content analysis, Fourier Domain Scoring. Our experiments use collection of Web pages relate to Statistic subject from Wikipedia with objectives to check correctness and performance evaluation of combination ranking method. Evaluation of PageRank Scoring show that the highest score does not always relate to Statistic. Since the links within Wikipedia articles exists so that users are always one click away from more information on any point that has a link attached, it it possible that unrelated topics to Statistic are most likely frequently mentioned in the collection. While the combination method show link score which is given proportional weight to content score of Web pages does effect the retrieval results.
ALGORITMA KOMPUTASI CERDAS UNTUK PREDIKSI JUMLAH PENGGUNA KENDARAAN SEBAGAI INDIKATOR RAWAN MACET Purwitasari, Diana; Mukhtar, Tsabbit Aqdami; Buliali, Joko Lianto
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No 1, Januari 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i1.a515

Abstract

Pertumbuhan jumlah kendaraan bermotor yang tinggi menimbulkan permasalahan kemacetan sehingga memerlukan suatu solusi untuk menanganinya. Jalan rawan macet diketahui berdasarkan banyak kendaraan yang lewat dalam rentang waktu tertentu. Bahasan makalah ini adalah penggunaan algoritma komputasi cerdas, multi layer perceptron, k-means dan particle swarm optimization (PSO), untuk melakukan peramalan jalan rawan macet berdasarkan jumlah pengguna jalan. Sumber data diambil dari pengamatan lapangan yang digunakan dalam pembangkitan bilangan acak untuk distribusi uniform, eksponensial dan normal. Prediksi tingkat kepadatan jalan di suatu rentang waktu dengan jaringan saraf menunjukkan hasil lebih baik apabila data pembelajaran juga diambil dari waktu yang sama dengan sejumlah hari sebelumnya (seminggu sampai sebulan). Sedangkan penggunaan k-means+PSO untuk optimasi pengelompokkan jalan berdasarkan kepadatannya membutuhkan data belajar dengan rentang waktu lebih pendek (10 menit di hari kerja untuk mobil dan motor).
PEMILIHAN KATA KUNCI UNTUK DETEKSI KEJADIAN TRIVIAL PADA DOKUMEN TWITTER MENGGUNAKAN AUTOCORRELATION WAVELET COEFFICIENTS Perdana, Rizal Setya; Fatichah, Chastine; Purwitasari, Diana
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 13, No 2, Juli 2015
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v13i2.a484

Abstract

ABSTRAK Pada penelitian ini diajukan sebuah sistem pendeteksian kejadian yang berulang secara periodik (trivial) dengan pem-ilihan kata kunci kejadian penting menggunakan perhitungan korelasi (autocorrelation) pada wavelet coefficient. Pem-ilihan kata kunci dilakukan untuk menemukan kata yang berulang secara periodik yang dianggap sebagai kejadian trivi-al. Hasil penelitian menunjukkan pemilihan kata kunci dengan nilai confidence boundary yang paling optimal adalah 0.20 pada nilai autocorrelation sebesar 31. Proses yang dilakukan oleh pengguna untuk menemukan kata kunci dari sua-tu kejadian, secara manual pengguna harus membaca banyak tweet dalam jumlah tertentu. Kata kunci yang merepresen-tasikan suatu kejadian penting menentukan tingkat penting atau tidaknya suatu kejadian. Pengguna twitter memiliki keterbatasan untuk membaca seluruh tweet yang ada untuk mengetahui adanya suatu kejadian. Sistem deteksi kejadian pada twitter telah dilakukan oleh para peneliti dalam bidang analisis sosial media. Pendeteksian kejadian trivial atau tidak penting yang terpisah dari kejadian penting diperlukan untuk memisahkan dua kejadian tersebut. Proses eliminasi terhadap kejadian trivial akan menyisakan tweet kejadian penting. Salah satu kejadian trivial adalah kejadian yang ber-ulang secara periodik dimana membutuhkan suatu cara spesifik untuk mendeteksi kemunculannya. Pendeteksian kejadian dilakukan dengan memanfaatkan pola-pola temporal atau sinyal dari data Twitter dalam bentuk sinyal wavelet untuk mendeteksi kemunculan kejadian penting. Pada penelitian ini melakukan pendeteksian kejadian yang berulang secara periodik dengan pemilihan kata kunci untuk kejadian penting. Sistem pendeteksian kejadian penting melakukan perhitungan terhadap autocorrelation pada koefisien wavelet. Hasil perhitungan menunjukkan bahwa pemilihan kata kunci paling optimal pada nilai confidence boundary sebesar 0.20 dan nilai autocorrelation sebesar 31.
KOMBINASI METODE MULTILAYER PERCEPTRON DAN TEORI FUZZY UNTUK KLASIFIKASI DATA MEDIS Navastara, Dini Adni; Safitri, Julia; Purwitasari, Diana
IKRAITH-INFORMATIKA Vol 2 No 2 (2018): IKRAITH INFORMATIKA VOL 2 NO 2 Juli 2018
Publisher : Fakultas Teknik Universitas Persada Indonesia YAI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (643.502 KB)

Abstract

Kemajuan teknologi informasi saat ini banyak digunakan untuk membantu komputasi data dalam berbagaipenelitian, salah satunya dalam bidang kesehatan (medis). Dibutuhkan peranan teknologi informasi untukmembantu komputasi dengan melakukan klasifikasi data medis berdasarkan keterangan-keterangan yangmenjelaskan data tersebut. Dalam tahapan klasifikasi terkadang data masih dapat timbul beberapa ketidakpastianyang disebabkan oleh adanya informasi yang kurang tepat, ambiguitas dalam data masukan, tumpang tindih batasbatasantara kelas, dan ketidaktentuan dalam mendefinisikan fitur. Untuk mengatasi permasalahan tersebut,dilakukan implementasi metode Neuro-fuzzy yang menggunakan kombinasi Neural Network dan pendekatan teoriFuzzy Set untuk klasifikasi data medis. Neuro-fuzzy merupakan penggabungan antara sistem Neural Network dansistem fuzzy. Sistem logika fuzzy memiliki kemampuan menangani data pengetahuan dalam persepsi danpenalaran seperti otak manusia tetapi tidak memiliki kemampuan untuk belajar dan beradaptasi. Sedangkan NeuralNetwork memiliki kemampuan untuk belajar dan beradaptasi tetapi tidak memiliki kemampuan penalaran sepertipada sistem logika fuzzy. Salah satu algoritma yang dapat diandalkan dalam klasifikasi data dari domain NeuralNetwork adalah Multilayer Perceptron Backpropagation Network (MLPBPN). Dari hasil uji coba didapatkantingkat akurasi pada dataset Breast Cancer Wisconsin, Mammographic Mass, dan Pima Indians Diabetes masingmasingmencapai 97,512%, 84,666%, dan 81,613%. Selain itu, metode Neuro-Fuzzy dapat meningkatkan akurasirata-rata sebesar 3,536% dari metode ANFIS.
PDITS: APLIKASI PANGKALAN DATA TERPADU UNTUK MENDUKUNG INTEGRASI MULTI SISTEM INFORMASI DI LINGKUNGAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER Purwitasari, Diana; Yuhana, Umi Laili; Rahman, Arief; Setiawan, Bambang; Affandi, Achmad
SISFO Vol 6 No 1 (2016)
Publisher : Department of Information Systems, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penyelenggaraan pendidikan di perguruan tinggi wajib dilaporkan ke Pangkalan Data Pendidikan Tinggi (PDPT) yang terintegrasi secara nasional sebagai bentuk akuntabilitas publik layanan pendidikan. Untuk mendukung proses bisnis kegiatan pendidikan Institut Teknologi Sepuluh Nopember (ITS) telah mengembangkan banyak sistem informasi. Data-data pada masing-masing sistem diintegrasikan di suatu pangkalan data terpadu ITS disebut PDITS sesuai konsep satu kali entri data untuk banyak pemanfaatan yang membantu dalam pelaporan ke PDPT. Pada makalah ini diuraikan suatu cara mengintegrasikan data dari beberapa sistem informasi dengan melakukan penarikan data dan penyesuaian data tersebut ke model basisdata terpusat PDITS. Selanjutnya pemanfaatan data ke sistem informasi lain dilakukan dengan memproses data PDITS ke format data sesuai kebutuhan. Hasil sistem PDITS yang meliputi tiga tahap utama: Impor, Validasi dan Proses menunjukkan kemudahan sistem integrasi sehingga dapat dilakukan oleh staf non teknis. Meskipun demikian pengembangan masih perlu dilakukan untuk integrasi dengan lebih banyak sistem informasi lainnya.
Cross-Domain Topic Learning Berbasis Frase untuk Pemodelan Topik pada Rekomendasi Kolaborasi Penelitian Zuraida, Vit; Purwitasari, Diana; Fatichah, Chastine
INTEGER: Journal of Information Technology Vol 3, No 2 (2018)
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (522.874 KB) | DOI: 10.31284/j.integer.2018.v3i2.255

Abstract

Rekomendasi kolaborasi penelitian antardomain dapat diperoleh melalui dokumen publikasi ilmiah seperti judul, abstrak, dan bibliografi. Oleh karena itu, proses ekstraksi topik riset dari seorang peneliti merupakan tahapan penting. Model topik berbasis kata belum dapat merepresentasikan topik dengan baik sebab urutan kata pada dokumen tidak diperhitungkan. Penelitian ini mengusulkan sistem rekomendasi kolaborasi antardomain dengan metode Cross-Domain Topic Learning (CTL) Berbasis Frase. CTL Berbasis Frase terdiri dari tiga fase utama: (1) transformasi dokumen dari format bag-of-words menjadi bag-of-phrases, (2) pemodelan topik terhadap frase yang sudah dibentuk untuk mengetahui distribusi probabilitas keterkaitan peneliti dengan topik, (3) perangkingan rekomendasi kolaborasi dengan random walk with restart. Pengujian sistem terhadap domain Visualization dan Data Mining pada dataset  AMiner menunjukkan bahwa CTL Berbasis Frase lebih baik daripada CTL berbasis kata. Terdapat pengingkatan nilai precision sebesar ±10% pada 10 rekomendasi teratas dan ±5% pada 20 rekomendasi teratas.
Klasifikasi Multi Class Pada Analisis Sentimen Opini Pengguna Aplikasi Mobile Untuk Evaluasi Faktor Usability Wardhana, Septiyawan Rosetya; Purwitasari, Diana
INTEGER: Journal of Information Technology Vol 4, No 1: May 2019
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.764 KB) | DOI: 10.31284/j.integer.2019.v4i1.474

Abstract

Dalam proses pengembangan maupun pengujian perangkat lunak, faktor usability merupakan aspek yang paling penting. Evaluasi faktor usability tersebut dapat dilakukan dengan menganalisa orientasi sentimen pada opini pengguna berdasarkan faktor usability. Namun, setiap opini juga memiliki tingkat sentimen yang mencerminkan tinggi rendahnya orientasi sentimen, sehingga akan lebih efektif apabila tingkat sentimen juga dipertimbangkan dalam proses evaluasi. Selain itu, opini pengguna juga dapat memiliki lebih dari 1 faktor usability. Hal tersebut dikarenakan setiap dokumen opini dapat terdiri lebih dari 1 kalimat dimana setiap kalimat bisa memiliki faktor usability yang berbeda. Berbeda dengan perangkat lunak lainnya, aplikasi mobile memiliki batasan dan konteks tersendiri. Sehingga model usability yang digunakan juga berbeda dengan perangkat lunak lainnya. Model PACMAD merupakan model usability yang disesuaikan dengan batasan dan konteks dari aplikasi mobile. Oleh karena itu dalam penelitian ini diusulkan suatu metode  evaluasi faktor usability dengan menggunakan klasifikasi multi class pada analisis sentimen dengan mempertimbangkan tingkat sentimen opini pengguna aplikasi mobile berdasarkan model usability PACMAD. Data opini pengguna dikaslifikasian dengan model klasifikasi multi class dengan metode naive bayes, kemudian dianalisis orientasi dan tingkat sentimennya dengan menggunakan metode SentiWordNet Interpretation. Berdasarkan hasil ujicoba diperoleh nilai akurasi sebesar 74,7%, precision 43,2%, recall 29,5% dan f-measure 34,5%.
PENGEMBANGAN SISTEM PENGENALAN WAJAH DENGAN METODE PENGKLASIFIKASIAN HIBRID BERBASIS JARINGAN FUNGSI BASIS RADIAL DAN POHON KEPUTUSAN INDUKTIF Soelaiman, Rully; Purwitasari, Diana; Tri Hayati, Ariadi Retno
Jurnal Informatika Vol 6, No 2 (2005): NOVEMBER 2005
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (318.797 KB) | DOI: 10.9744/informatika.6.2.pp. 115-124

Abstract

Face recognition is a difficult task mostly because of the inherent variability of the image formation process ranging from the position/cropping of the face and its environment (distance and illumination) is totally controlled, to those involving little or no control over the background and viewpoint. Moreover, those are allowing for major changes in facial appearance due to factors expression, aging, and accessories such as glasses or changes in hairstyle. A solution has been proposed by considering hybrid classification architectures deal with the benefit of robustness via consensus provided by ensembles of Radial Basis Functions (RBF) networks and categorical classification using decision trees. A specific approach considers an ensemble of RBF Networks through its ability to cope with variability in the image formation. The experiments were carried out on images drawn randomly 50 unique subjects totalling to 500 facial images with rotation ± 50 encoded in greyscale. The faces are then normalized to account for geometrical and illumination changes using information about the eye location. Specifically performance true positive by Ensambles RBF1 (ERBF1) increased on ± 13,86% measures up to RBF while ERBF2 by ± 15,93%. On the contrary the false negative rate decreased by amount of ±5,8% for ERBF1 and somewhat less to ±5,6% for ERBF2. When the connectionist ERBF model is coupled with an Inductive Decision Tree - C4.5 - the performance improves over the case while only the connectionist ERBF module is used. Abstract in Bahasa Indonesia : Pengklasifikasian wajah berkaitan dengan variasi data misalnya detil - detil kecil dari wajah atau transformasi saat proses pengambilan citra. Pengklasifikasian wajah dengan metode hibrid menggabungkan pembelajaran berbasis Jaringan Fungsi Basis Radial (JFBR) dan Pohon Keputusan Induktif. JFBR digunakan sebagai metode pembelajaran dalam arsitektur jaringan syaraf tiruan. Untuk meningkatkan kemampuan pengenalan dilakukan pengklasifikasian pada Pohon Keputusan Induktif. Selain menjadi metode penghubung pada pengklasifikasian hibrid, Himpunan JFBR (HJFBR) digunakan untuk penyediaan atribut pada pengklasifikasian Pohon Keputusan Induktif. Uji coba dilakukan pada 50 obyek dengan total ± 500 citra wajah dalam format grayscale. Data dipilih dengan memberi variasi mimik wajah, kemiringan (rotasi) data ± 50 dan juga dipengaruhi oleh pencahayaan di dalam ataupun d iluar ruangan. Rata - rata peningkatan keakurasian positif benar yang diberikan arsitektur HJFBR dibanding JFBR sebesar ±13,86% untuk HJFBR1 dan ±15,93% untuk HJFBR2. Namun menurunkan keakurasian negatif benar sebesar ±5,8% untuk HJFBR1 dan ±5,6% untuk HJFBR2. Penambahan pohon keputusan induktif pada metode hibrid memberikan keuntungan selain tetap dapat meningkatkan keakurasian positif benar juga mampu mengatasi permasalahan sebelumnya tentang penurunan keakurasian negatif benar. Kata kunci: pengenalan wajah, jaringan fungsi basis radial, pengklasifikasian hibrid, pohon keputusan induktif.
Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE) Ludviani, Resti; Hayati, Khadijah F.; Arifin, Agus Zainal; Purwitasari, Diana
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (297.228 KB) | DOI: 10.24002/jbi.v6i3.433

Abstract

Abstract. An appropriate selection term for expanding a query is very important in query expansion. Therefore, term selection optimization is added to improve query expansion performance on document retrieval system. This study proposes a new approach named Term Relatedness to Query-Entropy based (TRQE) to optimize weight in query expansion by considering semantic and statistic aspects from relevance evaluation of pseudo feedback to improve document retrieval performance. The proposed method has 3 main modules, they are relevace feedback, pseudo feedback, and document retrieval. TRQE is implemented in pseudo feedback module to optimize weighting term in query expansion. The evaluation result shows that TRQE can retrieve document with the highest result at precission of 100% and recall of 22,22%. TRQE for weighting optimization of query expansion is proven to improve retrieval document.     Keywords: TRQE, query expansion, term weighting, term relatedness to query, relevance feedback Abstrak..Pemilihan term yang tepat untuk memperluas queri merupakan hal yang penting pada query expansion. Oleh karena itu, perlu dilakukan optimasi penentuan term yang sesuai sehingga mampu meningkatkan performa query expansion pada system temu kembali dokumen. Penelitian ini mengajukan metode Term Relatedness to Query-Entropy based (TRQE), sebuah metode untuk mengoptimasi pembobotan pada query expansion dengan memperhatikan aspek semantic dan statistic dari penilaian relevansi suatu pseudo feedback sehingga mampu meningkatkan performa temukembali dokumen. Metode yang diusulkan memiliki 3 modul utama yaitu relevan feedback, pseudo feedback, dan document retrieval. TRQE diimplementasikan pada modul pseudo feedback untuk optimasi pembobotan term pada ekspansi query. Evaluasi hasil uji coba menunjukkan bahwa metode TRQE dapat melakukan temukembali dokumen dengan hasil terbaik pada precision  100% dan recall sebesar 22,22%.Metode TRQE untuk optimasi pembobotan pada query expansion terbukti memberikan pengaruh untuk meningkatkan relevansi pencarian dokumen.Kata Kunci: TRQE, ekspansi query, pembobotan term, term relatedness to query, relevance feedback
Siamese Long Short-Term Memory for Detecting Conflict of Interest on Scientific Papers Ilmi, Akhmad Bakhrul; Purwitasari, Diana; Fatichah, Chastine
IPTEK The Journal for Technology and Science Vol 30, No 2 (2019)
Publisher : IPTEK, LPPM, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (336.155 KB) | DOI: 10.12962/j20882033.v30i2.5008

Abstract

Scientific articles cited by other researchers have an impact on increasing author credibility. However, the citation process may be misused to unnaturally raise a bibliometric indicator value such as researcher’s h-index. Researchers may overly cites their own works, referred as self-citation, even though the topic of the references are not related to the current article. Further misconduct is excessive citations on the works of peoples related to the researcher which can be coercive or not, referred as conflict of interest (CoI). The proposed method uses a deep learning approach, Siamese Long ShortTerm Memory (LSTM), to recognize subject similarities between a scientific article and its references. Standard text similarity fails to do so because contextual relatedness of sentences in the articles need some learning process. Siamese-LSTM learns contextual relatedness of sentences in the article using two identical LSTM. Steps of the proposed method are (i) word-embedding to get weight values of terms but still considers their semantic relations, (ii) k-means clustering to generate training data for reducing time complexity in Siamese-LSTM learning of scientific articles, (iii) learns Siamese-LSTM weight from training data to identify contextual relatedness of sentences, (iv) calculate similarity of a scientific article with its references based on Siamese-LSTM. The empirical experiments are used to analyze similarity values and the possibility for conflict of interest in an article.
Co-Authors Abdillah, Surya Abid Famasya Abdillah Abid Famasya Abdillah Achmad Affandi Addien Haniefardy Ade Afrian Adhi Nurilham Adi Surya Suwardi Ansyah Adillion, Ilham Gurat Adni Navastara, Dini Agus Budi Raharjo Agus Budi Raharjo Agus Zainal Arifin Agus Zainal Arifin Ahmad Syauqi Ahmad Syauqi Aida Muflichah Akwila Feliciano Akwila Feliciano Alif Akbar Fitrawan, Alif Akbar Alqis Rausanfita Aminul Wahib Aminul Wahib Aminul Wahib Anisa Nur Azizah Apriantoni Apriantoni Apriantoni Apriantoni Ardianto Ardianto Ariadi Retno Tri Hayati Arief Rahman Arif Fadllullah Arini Rosyadi Ario Bagus Nugroho Arrie Kurniawardhani Arya Putra Kurniawan Asiyah Nur Kholifah Bambang Setiawan Baskoro Adi Pratomo Baskoro, Fajar Benito, Davian Budi Pangestu Budi Rahardjo Budi Raharjo, Agus Buliali, Joko Lianto Cahyaningtyas, Zakiya Azizah Chastine Fatichah Chilyatun Nisa, Chilyatun Christian Sri kusuma Aditya, Christian Sri kusuma Cornelius Bagus Purnama Putra Daniel Oranova Siahaan Daniel Swanjaya Dasrit Debora Kamudi Dhian Kartika Dian Saputra Dini Adni Navastara, Dini Adni Dwi Sunaryono Dwi Sunaryono Edy Sukotjo Eko Riduwan Elshe Erviana Angely Erlinda Argyanti Nugraha Erlinda Argyanti Nugraha Esti Yuniar F.X. Arunanto Fahmi Amiq Fahrur Rozi Fajar Baskoro Fajar Baskoro Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Febri Fernanda Febriliyan Samopa Fransiscus Xaverius Arunanto Galih Hendra Wibowo Ginardi, Raden Venantius Hari Glory Intani Pusposari Gurat Adillion, Ilham Gus Nanang Syaifuddiin Hadziq Fabroyir Hafidz, Abdan Hamidi, Mohammad Zaenuddin Handayani Tjandrasa Hani’ah, Mamluatul Hanif Affandi Hartanto Hani’ah, Mamluatul Haykal, Muhammad Farhan Herdayanto Sulistyo Putro Hilya Tsaniya Hudan Studiawan Husna, Farida Amila I Ketut Eddy Purnama I Made Satria Bimantara Ifnu Wisma Dwi Prastya Ilmi, Akhmad Bakhrul Imam Santosa Indra Lukmana Irdayanti, Marina Ivonne Soejitno Juanita, Safitri Juanita, Safitri Juli Purwanto Kardawi, Muhammad Yusuf Kautsar, Faiz Kevin Christian Hadinata Kevin Christian Hadinata Khadijah F. Hayati Kurnia Aji Tritamtama Lailatul Hidayah Luthfi Atikah M. Abdillah M. Abdul Wakhid Mabahist, Fahril Maheswari, Clarissa Luna Mauridhi Hery Purnomo Mauridhi Hery Purnomo Mirza Hamdhani Misbachul Falach Asy'ari Misbakhul Munir Irfan Subakti Mohammad Zaenuddin Hamidi Muhamad Nasir Muhammad Machmud Muhammad Mirza Muttaqi Nabila Puspita Firdi Nada Fitrieyatul Hikmah Nanik Suciati Narandha Arya Ranggianto Nova Rijati Novemi Uki A Novrindah Alvi Hasanah Nugraha, Raditya Hari Nur Hayatin Nurilham, Adhi Oktaviandra Pradita Putri Oktaviandra Pradita Putri, Oktaviandra Pradita Paramastri Ardiningrum Putri Damayanti Putu Praba Santika Putu Utami Andarini S. Putu Yuwono Kusmawan Raihan, Muhammad Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Nur Esti Anggraini, Ratih Nur Esti Rendra Dwi Lingga P. Resti Ludviani Rio Indralaksono Rizal Setya Perdana Rizka Sholikah Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Afthoni Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Rully Sulaiman Ryfial Azhar, Ryfial Safhira Maharani Safhira Maharani Safitri Juanita Safitri, Julia Salim Bin Usman Salim Bin Usman Salsabila Mazya Permataning Tyas Salsabila Salsabila Satrio Hadi Wijoyo Satrio Verdianto Satrio Verdianto Sembiring, Fred Erick Septiyan Andika Isanta Septiyan Andika Isanta Septiyawan Rosetya Wardhana Septiyawan Rosetya Wardhana Sherly Rosa Anggraeni Sherly Rosa Anggraeni Sidharta, Bayu Adjie Sihombing, Drigo Alexander Siti Rochimah Surya Sumpeno Suwida, Katon Syadza Anggraini Tanzilal Mustaqim Tegar Rachman Muzzammil Tesa Eranti Putri Tri Arief Sardjono Tsabbit Aqdami Mukhtar, Tsabbit Aqdami Umy Rizqi Verdianto, Satrio Victor Hariadi Vit Zuraida Wakhid, Muhammad Abdul Wardhana, Septiyawan Rosetya Wicaksono, Farhan Wijayanti Nurul Khotimah Wijoyo, Satrio Hadi Windy Deftia Mertiana wulansari wulansari Yanuardhi Arief Budiyono Yasinta Romadhona Yatestha, Anak Agung Yoga Yustiawan Yonathan, Vincent Yos Nugroho Yudhi Purwananto Yufis Azhar Yuhana, Umi Laili Yulia Niza Yulia Niza Yulian Findawati Zahrul Zizki Dinanto Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas Zuraida, Vit