Claim Missing Document
Check
Articles

Found 22 Documents
Search

AI dalam Pengawasan Maritim Menghadapi Ancaman Hibrida di Asia Tenggara Rudiyanto, Rudiyanto; Yusnaldy, Yusnaldy; Yulianto, Bayu Asih; Prakoso, Lukman Yudho; Risahdi, Muhammad
Jurnal sosial dan sains Vol. 5 No. 11 (2025): Jurnal Sosial dan Sains
Publisher : Green Publisher Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59188/jurnalsosains.v5i11.32572

Abstract

Penelitian ini menelaah peran kecerdasan buatan (AI) dalam meningkatkan efektivitas pengawasan maritim terhadap ancaman hibrida di kawasan Asia Tenggara. Ancaman hibrida, yang menggabungkan dimensi militer, siber, ekonomi, dan informasi, menuntut sistem keamanan laut yang adaptif dan cerdas. Dengan menggunakan pendekatan kualitatif dan analisis literatur strategis, penelitian ini mengidentifikasi bagaimana AI mendukung deteksi dini, analisis data pergerakan kapal, serta penilaian risiko terhadap aktivitas non-konvensional yang mengancam stabilitas kawasan. Hasil penelitian menunjukkan bahwa integrasi AI mampu meningkatkan kemampuan deteksi dan mitigasi ancaman lintas batas melalui otomasi analisis data multi-sumber seperti AIS, radar satelit, dan citra optik. Selain itu, AI berkontribusi dalam memperkuat kerja sama keamanan regional antarnegara ASEAN melalui fusi data dan peningkatan maritime domain awareness. Kendati demikian, tantangan seperti kesenjangan teknologi, isu etika, dan ketergantungan pada sistem asing masih menjadi hambatan utama. Penelitian ini menegaskan bahwa penerapan AI secara kolaboratif dan etis berpotensi menjadi pilar penting dalam membangun arsitektur keamanan laut cerdas dan berkelanjutan di Asia Tenggara.
Artificial Intelligence for Detecting Oil Spills in Strategic Areas: A Strategic Study and Implementation Review in the Natuna Sea Triyani, Triyani; Yulianto, Bayu Asih; Suwarno, Panji
Asian Journal of Social and Humanities Vol. 4 No. 3 (2025): Asian Journal of Social and Humanities
Publisher : Pelopor Publikasi Akademika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59888/q8aqnw44

Abstract

Oil spills in the strategic area of Natuna have continued to increase in recent years, causing significant ecological, economic, and geopolitical impacts. However, Indonesia's marine pollution detection system still relies on conventional methods that are limited spatially, temporally, and operationally. This study aims to analyze the potential implementation of Artificial Intelligence, especially the Convolutional Neural Network (CNN) model based on satellite imagery, to improve the effectiveness of oil spill monitoring and strengthen national Maritime Situational Awareness (MSA). The research uses a qualitative approach through literature studies, strategic analysis, and Natuna case studies. Secondary data were collected from scientific articles, reports from national institutions, international platforms such as EMSA and Copernicus, and data on Natuna pollution incidents for the 2019–2023 period. The analysis was carried out through thematic analysis, comparative analysis, strategic analysis, and case-based reasoning. The results show that CNN has high accuracy in detecting oil spill patterns from Sentinel-1 and Sentinel-2 imagery and has the potential to provide valid digital documentation for rapid response and legal proceedings. Further analysis revealed that AI integration is technically feasible for application in the TNI Pusinformar system, although it requires strengthening infrastructure, human resources, SOPs, and data security. The discussion emphasizes that AI application can improve data-based diplomacy, environmental law enforcement, and Indonesia's maritime surveillance capacity; thus, a national roadmap and supporting policies are needed for operational implementation.