p-Index From 2021 - 2026
6.188
P-Index
This Author published in this journals
All Journal ComEngApp : Computer Engineering and Applications Journal Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Inspiratif Pendidikan Jurnal Teknologi Informasi dan Ilmu Komputer Journal of Information Systems Engineering and Business Intelligence KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control UICELL Conference Proceeding Jurnal Sains dan Informatika JURNAL ILMIAH INFORMATIKA Hearty : Jurnal Kesehatan Masyarakat Jurnal Biomedika dan Kesehatan Psikologi Konseling: Jurnal Kajian Psikologi dan Konseling Journal of Electronics, Electromedical Engineering, and Medical Informatics Jurnal Pengabdian Kepada Masyarakat (Mediteg) Health Information : Jurnal Penelitian Jurnal Teknik Informatika (JUTIF) Journal of Applied Data Sciences JOURNAL LA MEDIHEALTICO MAHESA : Malahayati Health Student Journal Fitrah: Journal of Islamic Education Multidiciplinary Output Research for Actual and International Issue (Morfai Journal) Jurnal Kolaboratif Sains Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) Journal of Data Science and Software Engineering Jurnal INFOTEL Jurnal Pengabdian Kepada Masyarakat Itekes Bali JUKEJ: Jurnal Kesehatan Jompa Jurnal Informatika Polinema (JIP) Jurnal Kesehatan Masyarakat Perkotaan Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Holistik Jurnal Kesehatan
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Data Science and Software Engineering

Penerapan Long Short Term Memory RNN untuk Prediksi Transaksi Penjualan Minimarket Patrick Ringkuangan; Fatma Indriani; Muhammad Itqan Mazdadi; Irwan Budiman; Andi Farmadi
Journal of Data Science and Software Engineering Vol 1 No 02 (2020)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (475.488 KB)

Abstract

This study aims to determine whether it can build a prediction of sales of goods at the Lapan-Lapan Mart by using the Long Short Term Memory Recurrent Neural Network method that can be used to predict the sale of goods. In this study, the data was taken from the Lapan-Lapan Mart, together with data on 10 different items sold every day. The data is then compiled for the level of sales to be weekly and a total of 52 data is obtained for each item so that the total data is amounted to 520. To get the weight in the LSTM calculation, there are two processes, namely forward and backward . the weight will be used to make predictions using the basic formula of the LSTM.Based on the research that has been done, it is known that the highest accuracy of using MAD (Mean Absolute Deviation) is 91 gr (11.61803507) indomie goods and 1.8kg of lemon daia (2.077000464) for the lowest MAD
Optimasi Bobot Weighted Moving Average Dengan Particle Swarm Optimization Dalam Peramalan Tingkat Produksi Karet Dendy Fadhel Adhipratama Dendy; Irwan Budiman; Fatma Indriani; Radityo Adi Nugroho; Rudy Herteno
Journal of Data Science and Software Engineering Vol 2 No 03 (2021)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (336.447 KB)

Abstract

Rubber is a mainstay commodity in the country, in 2014 Indonesia ranked second as the largest natural rubber producing country in the world. However, rubber production in Indonesia experiences uncertain ups and downs so it is necessary to predict it in order to benefit small farmers and the state. Weighted Moving Average ( WMA) is a method for predicting time series data. However, the parameters on the WMA need to be optimized in order to get optimal weight results on the WMA and get accurate results. Algorithm Particle Swarm Optimization implemented to determine the weight value of the method Weighted Moving Average more optimal. PSO-WMA and WMA were carried out on three weights, namely from weighting 3 4 and 5 on rubber production data. So that the results of this study are WMA with 3 weights get 81% accuracy, 4 weight 80.5% and 5 weight 80.3%. And for PSO-WMA, the accuracy at weighting 3 is 81.4%, weighting 4 is 80.9% and for weighting 5 it is 81.6%. The test results of this study have the effect of the weight value on WMA in increasing the accuracy results.
Co-Authors Abdilah, Muhammad Fariz Fata Abdul Azis Abdullayev, Vugar Achmad Rizal Afifa, Ridha Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Al Habesyah, Noor Zalekha Amini, Aisah Ananda, Zahra Andi Farmadi Andi Farmadi Anshari, Muhammad Ridha Ansyari, Muhammad Ridho Arianti, Tiara Aryanti, Agustia Kuspita Asti, Rahmah Dwi Astuti, Yeni Ayu Astuty, Delfriana Ayu Athavale, Vijay Annant Azizah, Azkiya Nur Badali, Rahmat Amin Baharuddin Siregar, Baharuddin Baron Hidayat Barus, Nency Utami Br Berutu, Marwiyah Br Barus, Nency Utami br Damanik, Cici Rahayu Carolina, Ayu DALIMUNTHE, NADIYAH RAHMA Darmansyah, Rendi Dendy Fadhel Adhipratama Dendy Dewi Sri Wahyuni, Dewi Sri Difa Fitria Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini, Dwi Effendi, Khairunnisa Fahmi Setiawan Fairudz Shahura Faisal, M. Reza Faisal, Mohammad Reza Fajrin Azwary Fitriani, Karlina Elreine Friska Abadi Ghinaya, Helma Gustara, Rizki Asih Hafizah, Rini Harahap, Helma Denisah Hartati Hartati Hasyimi , Ali Hayati, Sera Br Hermiati, Arya Syifa Herteno, Rudi Heru Kartika Chandra I Gusti Ngurah Antaryama Ichwan Dwi Nugraha Ihsan, Muhammad Khairi Irwan Budiman Irwan Budiman Khairiyah Dwie Vanesa Lilies Handayani Lubis, Masruroh M. Apriannur M. Khairul Rezki Mahmud Mahmud Mawandri, Dwi Mohammad Mahfuzh Shiddiq Muhammad Alkaff Muhammad Itqan Mazdadi Muhammad Nadim Mubaarok Muhammad Reza Faisal, Muhammad Reza Muhammad Ridha Maulidi Muliadi Muliadi Muliadi Aziz Nafiz, Muhammad Fauzan Nita Arianty Nofi Susanti Nurhayani nurhayani Nurhayati Octavia, Mayang Dwi Oni Soesanto P., Chandrasekaran Patrick Ringkuangan Prastya, Septyan Eka Purnajaya, Akhmad Rezki Putri Maimunah Radityo Adi Nugroho Rapotan Hasibuan Reni Agustina Harahap Riadi, Agus Teguh Risma, Ade Ritonga, Egril Rehulina Rozaq, Hasri Akbar Awal Rudy Herteno Salianto Salianto, Salianto Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sa’diah, Halimatus Selvia Indah Liany Abdie Siregar, Nurul Syahputri Soesanto, Oni Sri Rahayu Suci Wulandari Triyoolanda, Anggun Utami, Tri Niswati Wahyu Caesarendra Wardana, Muhammad Difha Wati, Desi Indriani Rahma Wijaya Kusuma, Arizha YILDIZ, Oktay Yulia Khairina Ashar Yunida, Rahmi Zahra, Fairuz Zakwan, M. Hadin Zali, Muhammad Zata Ismah Zida Ziyan Azkiya