Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Will Covid-19 cases in the World reach 4 million? a forecasting approach using SutteARIMA Ansari Saleh Ahmar; R. Rusli
JOIV : International Journal on Informatics Visualization Vol 4, No 3 (2020)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.4.3.389

Abstract

The objective of this study was to determine whether Covid-19 cases in the world would have reached 4 million cases with the SutteARIMA method forecasting approach. Data from this study were obtained from the Worldometer from 1 March 2020 to 05 May 2020. Data were used for data fitting from 1 March 2020 to 28 April 2020 (29 April 2020 – 05 May 2020). The data fitting is used to see the extent of the accuracy of the SutteARIMA method when predicting data. The MAPE method is used to see the level of data accuracy. Results of forecasting data for the period from 29 April 2020 to 05 May 2020: 72,731; 84,666; 92,297; 100,797; 84,312; 81,517; 74845. The accuracy of SutteARIMA for the period 30 April 2020 – 06 May 2020 shall be 0.069%. Forecast results for as many as 4 million cases, namely from 08 May 2020 to 10 May 2020: 3,966,786; 4,047,328 and 4,127,747. The SutteARIMA method predicts that 4 million cases of Covid-19 in the world will be reported on the WHO situation report on the day 110/111 or 09 May 2020/10 May 2020.
Application of Neural Network Time Series (NNAR) and ARIMA to Forecast Infection Fatality Rate (IFR) of COVID-19 in Brazil Ansari Saleh Ahmar; Eva Boj
JOIV : International Journal on Informatics Visualization Vol 5, No 1 (2021)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.5.1.372

Abstract

Forecasting is a method that is often used to view future events using past time data. Past time data have useful information to use in obtaining the future. The aim of this study was to forecast infection fatality rate (IFR) of COVID-19 in Brazil using NNAR and ARIMA. ARIMA and NNAR are used because (1) ARIMA is a simple stochastic time series method that can be used to train and predict future time points and ARIMA also capable of capturing dynamic interactions when it uses error terms and observations of lagged terms; (2) the Artificial Neural Network (ANN) is a technique capable of analyzing certain non-linear interactions between input regressor and responses, and Neural Network Time Series (NNAR) is one method of ANN in which lagged time series values were used as inputs to a neural network. Data included in this study were derived from the total data of confirmed cases and the total data of death of COVID-19. The data of COVID-19 in Brazil from February 15, 2020 to April 30, 2020 were collected from the Worldometer (https://www.worldometers.info/coronavirus/) and Microsoft Excel 2013 was used to build a time-series table. Forecasting was accomplished by means of a time series package (forecast package) in R Software.  Neural Network Time Series and ARIMA models were applied to a dataset consisting of 76 days. The accuracy of forecasting was examined by means of an MSE. The forecast of IFR of COVID-19 in Brazil from May 01, 2020 to May 10, 2020 with NNAR (1,1) model was around in 6,85% and ARIMA (0,2,1) was around in 7.11%.
Predicting the Welfare Cost of Premature Deaths Based on Unsafe Sanitation Risk using SutteARIMA and Comparison with Neural Network Time Series and Holt-Winters Suwardi Annas; Ansari Saleh Ahmar; Rahmat Hidayat
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.%v.%i.1003

Abstract

Unhealthy and unsafe sanitation will make it easier for various diseases to attack the body. In addition, unsafe sanitation will also affect a country's economy, including declining welfare, tourism losses, and environmental losses due to the loss of productive land. The research aimed to estimate the welfare cost of premature deaths based on unsafe sanitation risks using the SutteARIMA, Neural Network Time Series, and Holt-Winters. The study analyzed estimates and projections of the welfare cost of premature deaths based on the risks of unsafe sanitation of BRICS countries (Brazil, Russia, Indonesia, China, and South Africa). The data in this research used secondary data. Secondary time series data was taken from the Environment Database of the OECD. Stat. (Mortality and welfare cost from exposure to environmental risks). The data on the study was based on variables: welfare cost of premature deaths, % GDP equivalent, risk: unsafe sanitation, age: all, sex: both, unit: percentage, and data from 2005 to 2019. The three forecasting methods (SutteARIMA, Neural Network Time Series, and Holt-Winters) were juxtaposed in fitting data to see the forecasting methods' reliability and accuracy. The accuracy of forecasting results was compared based on MAPE and MSE values. The results of the research showed that the SutteARIMA and NNAR(1,1) methods were best used to predict the welfare cost of premature deaths in view of unsafe sanitation risks for BRICS countries.
Predicting the Welfare Cost of Premature Deaths Based on Unsafe Sanitation Risk using SutteARIMA and Comparison with Neural Network Time Series and Holt-Winters Suwardi Annas; Ansari Saleh Ahmar; Rahmat Hidayat
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1685

Abstract

Unhealthy and unsafe sanitation will make it easier for various diseases to attack the body. In addition, unsafe sanitation will also affect a country's economy, including declining welfare, tourism losses, and environmental losses due to the loss of productive land. The research aimed to estimate the welfare cost of premature deaths based on unsafe sanitation risks using the SutteARIMA, Neural Network Time Series, and Holt-Winters. The study analyzed estimates and projections of the welfare cost of premature deaths based on the risks of unsafe sanitation of BRICS countries (Brazil, Russia, Indonesia, China, and South Africa). The data in this research used secondary data. Secondary time series data was taken from the Environment Database of the OECD. Stat. (Mortality and welfare cost from exposure to environmental risks). The data on the study was based on variables: welfare cost of premature deaths, % GDP equivalent, risk: unsafe sanitation, age: all, sex: both, unit: percentage, and data from 2005 to 2019. The three forecasting methods (SutteARIMA, Neural Network Time Series, and Holt-Winters) were juxtaposed in fitting data to see the forecasting methods' reliability and accuracy. The accuracy of forecasting results was compared based on MAPE and MSE values. The results of the research showed that the SutteARIMA and NNAR(1,1) methods were best used to predict the welfare cost of premature deaths in view of unsafe sanitation risks for BRICS countries.
Co-Authors Abdul Rahman Abdul Rahman Abdussakir Abdussakir Absussakir Abdussakir Achmad Sani Supriyanto Agus Nasir Ahmad Rifad Riadhi Ahmad Talib Akbar Iskandar Akbar Iskandar Alfairus, Muh. Qodri Ali Mokhtar Alief Imron Juliodinata Alok Kumar Panday Alsa, Yudhistira Ananda Andika Isma ANDIKA SAPUTRA Angela Diaz Cadena Asfar Asfar Asmar Asmar, Asmar Astuti, Niken Probondani Aswi, Aswi Ayu Rahayu Azzajjad, Muhammad Fath Boj del Val, Eva Boj, Eva Bustan, M Nadjib Dary Mochamad Rifqie Della Fadhilatunisa Dewi Fatmarani Surianto Dewi Satria Ahmar Djawad, Yasser Abd. Ersa Karwingsi Eva Boj Faizal Arya Samman Fathahillah Fathahillah Hamzah Upu Hardianti Hafid Hastuty Hastuty Hastuty Hastuty Hastuty Musa Herman Herman Hidayat M., Wahyu Ifriana Ifriana Ilimu, Edi Irwan Irwan Irwan Irwan Isma Muthahharah Jamaluddin Jamaluddin Kamaluddin Kamaluddin Kasmudin Mustapa Khadijah Khaeruddin Khaeruddin Lince, Ranak M. Miftach Fakhri Maemunah Magfirah Manalu, Yessi Febianti Mansyur Mansyur Marni Marni, Marni Meliyana R, Sitti Masyitah Miguel Botto-Tobar Misriani Suardin Mohd. Rizal Mohd. Isa Muhammad Abdy Muhammad Arif Tiro Muhammad Arif Tiro Muhammad Farhan Muhammad Kasim Aidid Muhammad Kasim Aidid Muhammad Nadjib Bustan Muhammad Nadjib Bustan Muhammad Nusrang Muliadi Muliadi N. Nurahdawati Nachnoer Arss Nasrul Ihsan Niken Probondani Astuti Niken Probondani Astuti Novi Afryanthi S. Nur Anisa Nurdin Arsyad, Nurdin Nurhikmawati, Nurhikmawati Nurul Khofifah Salsabila Parkhimenko Vladimir Anatolievich Patmasari, Andi Poerwanto, Bobby R. Ruliana R. Rusli R. Rusli R. Rusli Rahman, Abdul Rahman, Muhammad Fatur Rahmat Hidayat Rahmat Hidayat Rais, Zulkifli Rajesh Kumar Ramli Umar Riny Jefri Rizal Bakri Robbi Rahim Rosidah Rosidah Rosidah Rosidah Ruliana Ruliana Ruliana, Ruliana Rusli Rusli Rusli Rusli Rusli Rusli Rusli Rusli Rustam, Sitti Nailah Sahid Sahid Salim Al Idrus Salim Al Idrus Sapto Haryoko Sarinah Emilia Tonio Shofiyah Al Idrus Singh, Pawan Kumar Siti Nurazizah Auliah Sitti Masyitah Meliyana R. Sitti Rahmawati Sobirov, Bobur Sri Hastuti Virgianti Pulukadang Sri Muliani Sriwahyuni, Andi Ayu Suci Lestari Sutamrin, Sutamrin Suwardi Annas Suwardi Annas Suwardi Annas Syafruddin Side Tabash, Mosab Tri Santoso Triutomo, Agung wahyuni wahyuni Yunus, Asmar Zakiyah Mar'ah Zakiyah Mar'ah Zamil Wahab Zulkifli Rais