Claim Missing Document
Check
Articles

Found 24 Documents
Search

Pelatihan Manajemen Keuangan Bagi UMKM Rumah Kreatif BUMN Bank BRI Cabang Kota Semarang Hartarini, Yovita Mumpuni; Sopi, Sopi; Nafiah, Zumrotun; Junaidi, Achmad
Jurnal Pengabdian Masyarakat (JUDIMAS) Vol. 2 No. 1 (2024)
Publisher : Pusat Penelitian dan Pengabdian Masyarakat STIKes Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54832/judimas.v2i1.179

Abstract

Kegiatan ini diselenggarakan atas dasar banyaknya Usaha Mikro, Kecil, dan Menengah (UMKM) belum melakukan pengelolaan keuangan atas kegiatan usahanya. Pelaksanaan kegiatan ini melibatkan UMKM yang ada di Kota Semarang. Dengan memanfaatkan manajemen keuangan, UMKM dapat menghasilkan pengelolaan keuangan usahanya dengan mudah, cepat, dan tepat. Hasil dari kegiatan ini adalah UMKM menghasilkan pengelolaan keuangan usahanya yang dapat digunakan sebagai informasi dan kontrol usahanya.
Bitcoin Mining Hardware Profitability Prediction Using Categorical Boosting and Extreme Gradient Boosting Algorithms Dimas Satria Prayoga; Puspita Sari, Anggraini; Junaidi, Achmad
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/9xb2dz14

Abstract

Cryptocurrencies, especially Bitcoin, have gained global recognition, with mining being one of its most interesting aspects. This is especially important in the context where only a few types of bitcoin mining rigs are expected to operate profitably. On the other hand, in the field of machine learning, there are widely used algorithms, namely Extreme Gradient Boosting (XGBoost), which is known for its effectiveness, and Categorical Boosting (CatBoost), which excels in handling categorical data. This study aims to combine the performance of CatBoost and XGBoost using the Ridge Regression technique in predicting a case study that is not often encountered, namely predicting the profitability of Bitcoin mining hardware. The main steps include collecting data from reliable sources, preprocessing the data to ensure compatibility, feature selection to select the most relevant features, building a prediction model using the preprocessed data set, and then training and testing both models to evaluate their predictive accuracy. The evaluation metrics on the test data reveal the performance of CatBoost, XGBoost, and the CatBoost-XGBoost. CatBoost demonstrates a training time of 3.35 seconds with a MAPE of 15.67% and an RMSE of 0.1733. In comparison, XGBoost has a longer training time of 5.27 seconds but achieves a significantly lower MAPE of 6.49% and an RMSE of 0.1737. Meanwhile, the CatBoost-XGBoost, with the longest training time of 6.84 seconds, delivers a competitive MAPE of 6.57% and the lowest RMSE of 0.1696 among the three approaches. These results highlight that while XGBoost and CatBoost meta model outperform CatBoost in terms of accuracy, the Ridge meta model provides slightly better overall predictive performance based on RMSE.
Pendampingan Pengembangan Soft Skills Ibu-Ibu Mekar di Era Society 5.0 di Kota Semarang Fidyah Yuli Ernawati; Hendrayanti, Silvia; Junaidi, Achmad; Sukarsono Sukarsono
Inovasi Sosial : Jurnal Pengabdian Masyarakat Vol. 2 No. 4 (2025): November : Inovasi Sosial : Jurnal Pengabdian Masyarakat
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/inovasisosial.v2i4.2521

Abstract

This community service activity aims to improve the soft skills capacity of the Ibu-Ibu Mekar community in Semarang City to face the demands of the Society 5.0 era. The program was implemented through four stages: needs assessment, participatory planning, training, and mentoring. The methods used included interactive lectures, group discussions, role-play, and contextual practice. The results of the activity showed significant improvements in participants' communication, creativity, collaboration, and problem-solving skills. In addition, several participants began to demonstrate informal leadership roles and greater involvement in community activities. These findings indicate that the experience-based participatory mentoring approach is effective in strengthening women's empowerment and preparing communities for socio-technological change. The program also helped participants develop adaptability to change, increased self-confidence, and facilitated the formation of broader social networks in their communities. Empowering women through soft skills development is expected to create a more resilient community in facing the challenges posed by digital transformation in the Society 5.0 era. This program emphasizes the importance of sustainable soft skills development as a foundation for community resilience in the Society 5.0 era.
Klasifikasi Citra Tulisan Tangan Aksara Sunda Berbasis Inception-ResNetV2 dengan Transfer Learning Paramitha, Clara Diva; Junaidi, Achmad; Al Haromainy, Muhammad Muharrom
ILTEK : Jurnal Teknologi Vol. 20 No. 02 (2025): ILTEK : Jurnal Teknologi
Publisher : Fakultas Teknik Universitas Islam Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47398/iltek.v20i02.258

Abstract

Aksara Sunda adalah aksara yang semakin jarang digunakan sehingga masyarakat awam sering tidak familiar dengan bentuknya, terutama saat membaca tulisan tangan yang selalu memiliki variasi tergantung penulisnya sehingga ada keterbatasan dalam mengenali bentuknya. Penelitian ini berfungsi untuk menguji performa model deep learning untuk tugas klasifikasi 23 kelas Aksara Sunda serta menguji kombinasi model terhadap berbagai parameter agar dapat memberikan hasil optimal. Penelitian ini menggunakan Inception-ResNetV2 yang dikombinasikan dengan metode fine-tuning transfer learning untuk diuji terhadap tiga optimizer dan learning rate sebanyak 20 epoch. Data pada penelitian ini gabungan dari data GitHub dan data pengumpulan mandiri. Pengujian ini menggunakan rasio 80:20 untuk data latih dan data uji. Optimizer yang diuji adalah SGD, Adam, dan RMSProp. Hasil pengujian menunjukkan bahwa tiap-tiap optimizer mampu memberikan hasil teroptimalnya pada parameter tertentu. Melihat skor performa, RMSProp 0.0001 berhasil mencapai nilai akurasi data uji tertinggi pada 99.15%, diikuti oleh SGD 0.01 dengan akurasi data uji 98.66%, lalu disusul Adam 0.0001 dengan akurasi data uji 96.61%. Akan tetapi, melihat grafik kurva, optimizer SGD lebih stabil dibandingkan RMSProp—yang mengalami guncangan di awal—ataupun Adam—yang mengalami gejala overfitting ringan. Hasil kontradiktif ini dapat menjadi pembelajaran untuk penelitian selanjutnya.