Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Educational Management and Learning

Student Perspectives on the Role of Artificial Intelligence in Education: A Survey-Based Analysis Idroes, Ghazi Mauer; Noviandy, Teuku Rizky; Maulana, Aga; Irvanizam, Irvanizam; Jalil, Zulkarnain; Lensoni, Lensoni; Lala, Andi; Abas, Abdul Hawil; Tallei, Trina Ekawati; Idroes, Rinaldi
Journal of Educational Management and Learning Vol. 1 No. 1 (2023): August 2023
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/jeml.v1i1.58

Abstract

Artificial intelligence (AI) has emerged as a powerful technology that has the potential to transform education. This study aims to comprehensively understand students' perspectives on using AI within educational settings to gain insights about the role of AI in education and investigate their perceptions regarding the advantages, challenges, and expectations associated with integrating AI into the learning process. We analyzed the student responses from a survey that targeted students from diverse academic backgrounds and educational levels. The results show that, in general, students have a positive perception of AI and believe AI is beneficial for education. However, they are still concerned about some of the drawbacks of using AI. Therefore, it is necessary to take steps to minimize the negative impact while continuing to take advantage of the advantages of AI in education.
Leveraging Artificial Intelligence to Predict Student Performance: A Comparative Machine Learning Approach Maulana, Aga; Idroes, Ghazi Mauer; Kemala, Pati; Maulydia, Nur Balqis; Sasmita, Novi Reandy; Tallei, Trina Ekawati; Sofyan, Hizir; Rusyana, Asep
Journal of Educational Management and Learning Vol. 1 No. 2 (2023): December 2023
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/jeml.v1i2.132

Abstract

This study explores the application of artificial intelligence (AI) and machine learning (ML) in predicting high school student performance during the transition to university. Recognizing the pivotal role of academic readiness, the study emphasizes the need for tailored interventions to enhance student success. Leveraging a dataset from Portuguese high schools, the research employs a comparative analysis of six ML algorithms—linear regression, decision tree, support vector regression, k-nearest neighbors, random forest, and XGBoost—to identify the most effective predictors. The dataset encompasses diverse attributes, including demographic details, social factors, and school-related features, providing a comprehensive view of student profiles. The predictive models are evaluated using R-squared, Root Mean Square Error, and Mean Absolute Error metrics. Results indicate that the Random Forest algorithm outperforms others, displaying high accuracy in predicting student performance. Visualization and residual analysis further reveal the model's strengths and potential areas for improvement, particularly for students with lower grades. The implications of this research extend to educational management systems, where the integration of ML models could enable real-time monitoring and proactive interventions. Despite promising outcomes, the study acknowledges limitations, suggesting the need for more diverse datasets and advanced ML techniques in future research. Ultimately, this work contributes to the evolving field of educational AI, offering practical insights for educators and institutions seeking to enhance student success through predictive analytics.
Embrace, Don’t Avoid: Reimagining Higher Education with Generative Artificial Intelligence Noviandy, Teuku Rizky; Maulana, Aga; Idroes, Ghazi Mauer; Zahriah, Zahriah; Paristiowati, Maria; Emran, Talha Bin; Ilyas, Mukhlisuddin; Idroes, Rinaldi
Journal of Educational Management and Learning Vol. 2 No. 2 (2024): November 2024
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/jeml.v2i2.233

Abstract

This paper explores the potential of generative artificial intelligence (AI) to transform higher education. Generative AI is a technology that can create new content, like text, images, and code, by learning patterns from existing data. As generative AI tools become more popular, there is growing interest in how AI can improve teaching, learning, and research. Higher education faces many challenges, such as meeting diverse learning needs and preparing students for fast-changing careers. Generative AI offers solutions by personalizing learning experiences, making education more engaging, and supporting skill development through adaptive content. It can also help researchers by automating tasks like data analysis and hypothesis generation, making research faster and more efficient. Moreover, generative AI can streamline administrative tasks, improving efficiency across institutions. However, using AI also raises concerns about privacy, bias, academic integrity, and equal access. To address these issues, institutions must establish clear ethical guidelines, ensure data security, and promote fairness in AI use. Training for faculty and AI literacy for students are essential to maximize benefits while minimizing risks. The paper suggests a strategic framework for integrating AI in higher education, focusing on infrastructure, ethical practices, and continuous learning. By adopting AI responsibly, higher education can become more inclusive, engaging, and practical, preparing students for the demands of a technology-driven world.
Techniques and Tools in Learning Analytics and Educational Data Mining: A Review Noviandy, Teuku Rizky; Idroes, Ghazi Mauer; Paristiowati, Maria; Idroes, Rinaldi
Journal of Educational Management and Learning Vol. 3 No. 1 (2025): May 2025
Publisher : Heca Sentra Analitika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.60084/jeml.v3i1.308

Abstract

Learning analytics and educational data mining are rapidly evolving fields that leverage data-driven methods to enhance teaching, learning, and institutional decision-making. This review provides a comprehensive overview of the key analytical techniques and tools employed in learning analytics and educational data mining, including classification, clustering, regression, association rule mining, and data visualization. It also highlights the integration of advanced methods such as deep learning and adaptive systems for personalized education. The paper examines various platforms and technologies, including learning management systems, open-source tools, and AI/ML libraries, to evaluate their capabilities, scalability, and practical adoption. Key application areas, such as dropout prediction, engagement analysis, personalized learning, and curriculum design, are examined through selected case studies spanning K–12 and higher education. The review emphasizes the growing importance of ethical considerations, interpretability, and usability in the application of educational analytics. By synthesizing current practices and trends, this work aims to inform educators, researchers, and developers seeking to harness educational data for improved learning outcomes and strategic planning.
Co-Authors Abas, Abdul Hawil Abd Rahman, Sunarti Ahmad, Noor Atinah Akmal Muhni Alfizar Alfizar Ali Bakri Anggi, Tiara Aprianto . Arkadinata, Teguh Asep Rusyana Azhar, Fauzul Bachtiar, Boy Muhclis Bahri, Ridzky Aulia Bako, Winanda Celik, Ismail Diah, Muhammad Diana Setya Ningsih, Diana Diana Setya Ningsih, Diana Setya Diki, Diki Eko Suhartono El-Shazly, Mohamed Emran, Talha Bin Erkata Yandri Faisal, Farassa Rani Fajar Fakri Fauziah, Niken Fazli, Qalbin Salim Hafni Zahara Harahap, Saima Putri Harera, Cheariva Firsa Hewindati, Yuni Tri Hizir Sofyan Idroes, Ghalieb Mutig Ifandi, Ilham Imelda, Eva Irvanizam, Irvanizam Irwana, Salman Jainury, Aldi Jauna, Jauna Kemala, Pati Khairan Khairan Khalijah Awang Kurniadinur, Kurniadinur Kusumo, Fitranto Lala, Andi Lukman Hakim Maria Paristiowati Marwan Marwan Maulana, Aga Maulydia, Nur Balqis Maysarah, Hilda Medyan Riza Mirda, Erisna Mirja, Mirja Misbullah, Alim Muhammad Adam, Muhammad Muhammad Ichsan Muhammad Ichsan Muhammad Sabri Muhammad Subianto Muhammad Yanis Muhammad Yusuf Mukhlisuddin Ilyas Muliadi Ramli Muslem Muslem, Muslem Musvira, Intan Natasya Natasya Nizamuddin Nizamuddin Nova Yanti Pasyamei Rembune Kala Patwekar, Mohsina Prasetio, Rasi Purnama, M. Risky Putri Raisah Raisah, Putri Raudhatul Jannah Razief Perucha Fauzie Afidh Rinaldi Idroes Rizkia, Tatsa Sasmita, Novi Reandy Shofi, Shofi Siti Maulina Rukmana Souvia Rahimah Suhendra , Rivansyah Suhendra, Rivansyah Suhendrayatna Suhendrayatna Surna, Muhammad Ipan Susanna Susanna Syamsiar, Syamsiar Taufiq Karma Teuku Rizky Noviandy Teuku Zulfikar Tjut Chamzurni TRINA EKAWATI TALLEI Wahyuni, Srie Wangi, Putri Ayu Sekar Wildan Seni, Wildan Wiwik Handayani Yustiana Yustiana, Yustiana Zahriah, Zahriah Zuchra Helwani, Zuchra Zulkarnain Jalil