p-Index From 2021 - 2026
9.059
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Informatika Komputer Teknika Bulletin of Electrical Engineering and Informatics Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Informatika dan Teknik Elektro Terapan CESS (Journal of Computer Engineering, System and Science) Jurnal CoreIT JURNAL KAJIAN TEKNIK ELEKTRO JTAM (Jurnal Teori dan Aplikasi Matematika) METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi INTECOMS: Journal of Information Technology and Computer Science KACANEGARA Jurnal Pengabdian pada Masyarakat Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) IJID (International Journal on Informatics for Development) JURIKOM (Jurnal Riset Komputer) Jurnal Tekno Kompak TEKNOKOM : Jurnal Teknologi dan Rekayasa Sistem Komputer Jurnal Informatika dan Rekayasa Perangkat Lunak Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Indonesian Journal of Electrical Engineering and Computer Science Bubungan Tinggi: Jurnal Pengabdian Masyarakat Jurnal Manajemen Informatika Jayakarta International Journal Software Engineering and Computer Science (IJSECS) Berdikari : Jurnal Pengabdian kepada Masyarakat ABDINE Jurnal Pengabdian Masyarakat Malcom: Indonesian Journal of Machine Learning and Computer Science Technology and Informatics Insight Journal KAMI MENGABDI Journal of Data Science Theory and Application Journal of Digital Business and Management Prosiding Seminar Nasional Rekayasa dan Teknologi (TAU SNAR- TEK) Jurnal Indonesia : Manajemen Informatika dan Komunikasi Edusight International Journal of Multidisciplinary Studies (EIJOMS) International Journal of Law Social Sciences and Management Computer Journal
Claim Missing Document
Check
Articles

Optimisasi Penjadwalan Kegiatan Guru pada SMK IDN Boarding School Jonggol dengan Penerapan Algoritma Genetika Nuradi, Fahmi; Tundo, Tundo; Mulyana, Dadang Iskandar; Lestari, Sri
TEKNOKOM Vol. 7 No. 2 (2024): TEKNOKOM
Publisher : Department of Computer Engineering, Universitas Wiralodra

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31943/teknokom.v7i2.223

Abstract

This document describes guidelines for Authors in writing an article in JIMIK. This abstract section should Activity scheduling is a crucial aspect of educational management, especially in school environments with many activities and limited resources. At IDN Boarding School Vocational School, the challenges in scheduling teacher activities become increasingly complex as the number of subjects, extracurricular activities and limited resources such as space and time increase. Manual scheduling methods using spreadsheets such as Microsoft Excel take a long time and are prone to human error. This research proposes the application of a Genetic Algorithm to optimize the scheduling of teacher activities at the IDN Boarding School Vocational School. The Genetic Algorithm was chosen because of its ability to find optimal solutions through selection, crossover and mutation processes. This algorithm is able to handle various constraints in scheduling, both hard constraints (constraints that must be obeyed) and soft constraints (constraints that are desired but not mandatory). The aim of this research is to develop an automatic scheduling system that can reduce delays and the risk of errors in preparing schedules, adjust schedules quickly when sudden changes occur, and distribute teacher workload more evenly. The research results show that the application of a Genetic Algorithm can produce a more efficient and effective schedule compared to manual methods, by minimizing schedule conflicts, optimizing space use, and ensuring a more balanced distribution of teacher workload. This research not only provides a solution to scheduling problems at the IDN Boarding School Vocational School, but can also be adapted and applied to other educational institutions. Thus, this research makes a real contribution to improving the quality of educational management and teaching and learning processes in Indonesia.
Prediksi Tingkat Stres Pada Mahasiswa UNUGHA Cilacap Menggunakan Algoritma K-Nearest Neighbor Wafiqi, Achmad Ulul Azmi; Tundo, Tundo; James, Bobby Arvian; Ramadhan, Abhirama Huga; Nizar, Amin
Jurnal Tekno Kompak Vol 18, No 2 (2024): AGUSTUS
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jtk.v18i2.3933

Abstract

Penelitian ini bertujuan untuk meningkatkan kewarasan mahasiswa agar dapat menyelesaikan studi belajar tanpa adanya stres yang melanda, khususnya bagi mahasiswa UNUGHA Cilacap. Langkah yang digunakan yaitu, dengan cara memprediksi tingkat stres mahasiswa dengan menggunakan Algoritma K-Nearest Neighbor (KNN) berdasarkan faktor-faktor yang mempengaruhi keadaan psikologis mereka, seperti tekanan akademis, kesimbangan kehidupan, dan faktor-faktor psikologis lainnya. Dalam penelitian ini dipengaruhi oleh faktor Kebiasaan Studi, Waktu Tidur, Aktivitas Fisik, Kesehatan Fisik, Tingkat Stres, dan Tingkat kecemasan mahasiswa. Hasil penelitian menunjukkan bahwa Algoritma KNN dapat digunakan untuk mengklasifikasikan mahasiswa kedalam kategori tingkat stress tertentu dengan akurasi sebesar 83,33%, dengan data uji sebanyak 6 mahasiswa dan data training sebanyak 84 mahasiswa. Mahasiswa yang tergolong stres berat akan dilakukan penanganan secara intensif agar dapat dipulihkan kembali dengan cara melakukan pendekatan berkala dengan pendampingan seorang Psikolog yang ada di UNUGHA Cilacap. Selain itu, temuan ini menyoroti pentingnya teknologi kecerdasan buatan, khususnya Algoritma KNN, dalam mebantu mengidentifikasi faktor-faktor yang berkontribusi terhadap kesejahteraan psikologis mahasiswa, juga menekankan dampak stres pada perilaku dan kesejahteraan fisik mahasiswa termasuk kemungkinan munculnya emosi negative, kesulitan tidur, depresi, dan gangguan fisik lainnya. Temuan ini penting untuk pengembangan strategi intervensi yang lebih efektif dalam mendukung mahasiswa di lingkungan akademis yang penuh dengan tekanan. Penelititan ini menunjukan bahwa Aloritma KNN dapat digunakan sebagai alat prediksi yang efektif untuk memahami dan mengelola tingkat stres mahasiswa.
Analisis Perbandingan Fuzzy Tsukamoto dan Sugeno dalam Menentukan Jumlah Produksi Kain Tenun Menggunakan Base Rule Decision Tree Tundo, Tundo; Akbar, Riolandi; Sela, Enny Itje
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 1: Februari 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020701751

Abstract

Penelitian ini menerangkan tentang analisis perbandingan fuzzy Tsukamoto dan Sugeno dalam menentukan jumlah produksi kain tenun dengan menggunakan base rule decision tree. Dari hasil analisis penelitian ini, maka ditemukan beberapa perbedaan yang sangat signifikan: (1) Metode fuzzy Tsukamoto dari hasil yang diperoleh lebih mendekati dari data sesungguhnya, dibandingkan dengan fuzzy Sugeno, (2) Selisih yang diperoleh dengan menggunakan fuzzy Tsukamoto dengan data produksi sesungguhnya selalu konsisten yaitu hasil fuzzy Tsukamoto selalu lebih besar, sedangkan untuk fuzzy Sugeno tidak konsisten, (3) Hasil selisih untuk fuzzy Tsukamoto relatif mendekati dari data produksi sesungguhnya, sedangkan untuk fuzzy Sugeno relatif jauh selisih yang dihasilkan. Sehingga dapat disimpulkan bahwa metode yang paling mendekati nilai kebenaran adalah produksi yang mengunakan metode Tsukamoto dengan keakuratan yang diperoleh menggunakan base rule decision tree sebesar 83.3333 %.AbstractThis study describes the comparative analysis of fuzzy Tsukamoto and Sugeno determining the amount of woven fabric production using a decision tree base rule. From the results the analysis of this study, we found several very significant differences: (1) The fuzzy Tsukamoto method of the results obtained is closer to the actual, compared to fuzzy Sugeno, (2) The difference obtained by using fuzzy Tsukamoto with actual production data is always consistent is that Tsukamoto fuzzy results are always greater, while for Sugeno's fuzzy inconsistency, (3) The difference results for fuzzy Tsukamoto are relatively close to the actual production data, whereas Sugeno fuzzy is relatively far from the difference produced. So it can be concluded that the method closest to the truth value is production using the Tsukamoto method with the accuracy obtained using the base rule decision tree of 83.3333%.
Penerapan Decision Tree J48 dan Reptree dalam Menentukan Prediksi Produksi Minyak Kelapa Sawit menggunakan Metode Fuzzy Tsukamoto Tundo, Tundo; 'Uyun, Shofwatul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 3: Juni 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020731870

Abstract

Penelitian ini menerangkan penerapan decision tree J48 dan REPTree dengan menggunakan metode fuzzy Tsukamoto dengan objek yang digunakan adalah penentuan jumlah produksi minyak kelapa sawit di perusahaan PT Tapiana Nadenggan dengan tujuan untuk mengetahui decision tree mana yang hasilnya mendekati dari data sesungguhnya sehingga dapat digunakan untuk membantu memprediksi jumlah produksi minyak kelapa sawit di PT Tapiana Nadenggan ketika proses produksi belum diproses. Digunakannya decision tree J48 dan REPTree yaitu untuk mempercepat dalam pembuatan rule yang digunakan tanpa harus berkonsultasi dengan para pakar dalam menentukan rule yang digunakan. Dari data yang digunakan akurasi dari decision tree J48 adalah 95.2381%, sedangkan akurasi REPTree adalah 90.4762%, akan tetapi dalam kasus ini decision tree REPTree yang lebih tepat digunakan dalam proses prediksi produksi minyak kelapa sawit, karena di uji dengan data sesungguhnya pada bulan Maret tahun 2019 menggunakan REPTree diperoleh 16355835 liter, sedangkan menggunakan J48 diperoleh 11844763 liter, dimana data produksi sesungguhnya sebesar 17920000 liter. Sehingga dapat ditemukan suatu kesimpulan bahwa untuk kasus ini data produksi yang mendekati dengan data sesungguhnya adalah REPTree, meskipun akurasi yang diperoleh lebih kecil dibandingkan dengan J48.AbstractThis study explains the application of the J48 and REPTree decision tree using the fuzzy Tsukamoto method with the object used is the determination of the amount of palm oil production in the company PT Tapiana Nadenggan with the aim of knowing which decision tree the results are close to the actual data so that it can be used to help predict the amount palm oil production at PT Tapiana Nadenggan when the production process has not been processed. The use of the J48 and REPTree decision tree is to speed up the rule making that is used without having to consult with experts in determining the rules used. From the data used the accuracy of the J48 decision tree is 95.2381%, while the REPTree accuracy is 90.4762%, but in this case the REPTree decision tree is more appropriate to be used in the prediction process of palm oil production, because it is tested with actual data in March 2019 uses REPTree obtained 16355835 liters, while using J48 obtained 11844763 liters, where the actual production data is 179,20000 liters. So that it can be found a conclusion that for this case the production data approaching the actual data is REPTree, even though the accuracy obtained is smaller compared to J48.
Penerapan Metode Weighted Aggregated Sum Product Assesment dalam Menentukan Beras Terbaik untuk Pembuatan Kue Serabi Tundo, Tundo; Kurniawan, Doni
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 4: Agustus 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020742309

Abstract

Penelitian ini menerangkan penerapan metode Weighted Aggregated Sum Product Assesment dalam menentukan beras terbaik yang akan digunakan untuk pembuatan kue serabi, kasus diambil dari pedagang kue serabi di Kota Tegal Jawa Tengah dengan tujuan memberikan pengetahuan kepada para pedagang kue serabi agar lebih detail dalam menentukan beras yang layak untuk digunakan dalam pembuatan kue serabi bukan hanya sekedar beras tersebut murah, akan tetapi perluh dilihat bentuk dan ciri keseluruhan beras.  Langkah-langkah yang dilakukan untuk menentukan beras terbaik yang kemudian akan digunakan sebagai bahan dasar pembuatan kue serabi dengan menggunakan metode Weighted Aggregated Sum Product Assesment yaitu: (1) Mempersiapkan sebuah matriks yang didalamnya merupakan nilai dari masing masing himpunan dari kriteria, (2) Menormalisasikan data matriks x menjadi data ternormalisasi, (3) Menghitung nilai alternatif dengan menggunakan rumus Weighted Aggregated Sum Product Assesment sehingga ditemukan nilai perangkingan. Setelah langkah-langkah tersebut dilakukan, dalam penelitian ini beras terbaik yang tepat untuk digunakan sebagai bahan pembuatan kue serabi adalah beras pelita dengan hasil 7,12 dengan menduduki rangking pertama. AbstractThis study explains the application of the Weighted Aggregated Sum Product Assessment method in determining the best rice to be used for making pancake cakes. The steps taken to determine the best rice using the Weighted Aggregated Sum Product Assessment method are: (1) Prepare all rice data to be calculated, (2) Make rice data in the form of matrix x and normalize the data matrix x into normalized data, ( 3) Calculate the alternative value for the best rice by using the formula Weighted Aggregated Sum Product Assessment so that the ranking value is found. After these steps are carried out, the best rice that is right to be used as a pancake cake ingredient is pelita rice with a yield of 7.12 by occupying the first rank. Proving the results of the Weighted Aggregated Sum Product Assessment method, a questionnaire was conducted directly to pancake cake traders, especially those in Tegal, which produced a percentage of 80% from 100, which said that pelita rice was rice worthy of being used as a material for pancake cakes because the pancake produced is more fragrant and fresher and the price is relatively cheap.
Konsep Decision Tree Reptree untuk Melakukan Optimasi Rule dalam Fuzzy Inference System Tsukamoto Tundo, Tundo; 'Uyun, Shofwatul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 3: Juni 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022922601

Abstract

Penelitian ini menjelaskan tentang decision tree REPTree dalam membuat suatu rule yang terbentuk dari produksi minyak kelapa sawit di PT Tapiana Nadenggan, yang dipengaruhi oleh faktor banyaknya kelapa sawit, permintaan yang ada, serta persediaan yang tersedia. Konsep dari decision tree REPTree adalah konsep awal dari decision tree J48 yang kemudian mengalami pemangkasan kembali, sehingg rule yang yang terbentuk lebih minimal dan praktis. Rule yang minimal dan praktis belum tentu dapat dikatakan terbaik, untuk membuktikan hal itu perlu adanya uji coba dan pembuktian. Pembuktian yang dilakukan dalam penelitian ini salah satunya dengan menggunakan perbandingan decision tree J48 dan Random Tree dengan tujuan untuk mengetahui optimasi rule yang terbentuk dengan menggunakan metode fuzzy inference system Tsukamoto, setelah dihitung bahwa decision tree REPTree mempunyai Average Forecasting Error Rate (AFER) yang lebih kecil sebesar 23,17% dengan nilai kebenaran 76,83%, sedangkan J48 memiliki tingkat error sebesar 24,96%, dengan nilai kebenaran 75,04%,  sementara Random Tree memiliki tingkat error sebesar 36,51%, dengan nilai kebenaran 63,49% pada kasus  prediksi produksi minyak kelapa sawit di PT Tapiana Nadenggan. AbstractThis research explains about REPTree's decision tree in making a rule that is formed from the production of palm oil in PT Tapiana Nadenggan, which is influenced by factors of the amount of palm oil, existing demand, and available supplies. The concept of the REPTree decision tree is the initial concept of the J48 decision tree which then experiences pruning, so that the rules formed are more minimal and practical. A minimum and practical rule may not be the best, to prove that there is a need for trials and proofs. Proof carried out in this research is one of them by using a comparison of decision trees J48 and Random Tree with the aim to find out the optimization of rules formed using the Tsukamoto system's fuzzy inference method, after calculating that the REPTree decision tree has a more average Forecasting Error Rate (AFER) error tree small of 23.17% with a truth value of 76.83%, while J48 has an error rate of 24.96%, with a truth value of 75.04%, while Random Tree has an error rate of 36.51%, with a truth value of 63, 49% in the case of prediction of palm oil production at PT Tapiana Nadenggan.
Perbandingan Decision Tree J48, REPTREE, dan Random Tree dalam Menentukan Prediksi Produksi Minyak Kelapa Sawit Menggunakan Fuzzy Tsukamoto Tundo, Tundo; 'Uyun, Shofwatul
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021833108

Abstract

 Penelitian ini menerangkan analisis decision tree J48, REPTree dan Random Tree dengan menggunakan metode fuzzy Tsukamoto dalam penentuan jumlah produksi minyak kelapa sawit di perusahaan PT Tapiana Nadenggan dengan tujuan untuk mengetahui decision tree mana yang hasilnya mendekati dari data sesungguhnya. Digunakannya decision tree J48, REPTree, dan Random Tree yaitu untuk mempercepat dalam pembuatan rule yang digunakan tanpa harus berkonsultasi dengan para pakar dalam menentukan rule yang digunakan. Berdasarkan data yang digunakan akurasi pembentukan rule dari decision tree J48 adalah 95,2381%, REPTree adalah 90,4762%, dan Random Tree adalah 95,2381%. Hasil dari penelitian yang telah dihitung bahwa metode fuzzy Tsukamoto dengan menggunakan REPTree mempunyai error Average Forecasting Error Rate (AFER) yang lebih kecil sebesar 23,17 % dibandingkan dengan menggunakan J48 sebesar 24,96 % dan Random Tree sebesar 36,51 % pada prediksi jumlah produksi minyak kelapa sawit. Oleh sebab itu ditemukan sebuah gagasan bahwa akurasi pohon keputusan yang terbentuk menggunakan tools WEKA tidak menjamin akurasi yang terbesar adalah yang terbaik, buktinya dari kasus ini REPTree memiliki akurasi rule paling kecil, akan tetapi hasil prediksi memiliki tingkat error paling kecil, dibandingkan dengan J48 dan Random Tree. AbstractThis study explains the J48, REPTree and Tree Random tree decision analysis using Tsukamoto's fuzzy method in determining the amount of palm oil production in PT Tapiana Nadenggan's company with the aim of finding out which decision tree results are close to the actual data. The decision tree J48, REPTree, and Random Tree is used to accelerate the making of rules that are used without having to consult with experts in determining the rules used. Based on the data used the accuracy of the rule formation of the J48 decision tree is 95.2381%, REPTree is 90.4762%, and the Random Tree is 95.2381%. The results of the study have calculated that the Tsukamoto fuzzy method using REPTree has a smaller Average Forecasting Error Rate (AFER) rate of 23.17% compared to using J48 of 24.96% and Tree Random of 36.51% in the prediction of the amount of palm oil production. Therefore an idea was found that the accuracy of decision trees formed using WEKA tools does not guarantee the greatest accuracy is the best, the proof of this case REPTree has the smallest rule accuracy, but the predicted results have the smallest error rate, compared to J48 and Tree Random.
Sistem Bantu untuk Pengrajin dalam Menentukan Kayu Terbaik Terbaik untuk Bahan Gitar dengan Menggunakan Matode Moora Tundo, Tundo; Nugroho, Wisnu Dwi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 6: Desember 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021863756

Abstract

Penelitian ini bertujuan untuk membantu pengrajin kayu di Dongkelan, Krapyak, Yogyakarta dalam menentukan kayu terbaik untuk dijadikan sebagai bahan gitar, karena sering terjadi keluhan dari para pembeli bahwa bahan yang dijadikan bahan gitar cepat lapuk dan kusam dari segi warnah. Berdasarkan permasalahan tersebut, dicari suatu solusi dengan menggunakan metode Decision Support System Multi Objective Optimization on the basic of Ratio Analysis (MOORA) serta dibantu oleh pakar dalam menentukan kriteria yang tepat berkaitan penentuan kayu terbaik yang digunakan dalam pembuatan bahan gitar, setelah berdiskusi panjang ditemukan hasil kriteria yang tepat berdasarkan permasalahan, berupa kriteria kekuatan kayu, serat kayu, tekstur, dan berat kayu. Semua kriteria tersebut, kemudian diproses dengan menggunakan metode MOORA, dengan data yang digunakan sebanyak 29 jenis data kayu, yang diperoleh dari pengrajin yang ada di wilayah tersebut. Setelah diproses, diperoleh hasil 3 kayu terbaik yang layak untuk digunakan sebagai bahan pembuatan gitar secara berurutan dalah kayu Bubinga dengan nilai 18,36785, kayu Bocote dengan nilai 17,33385, dan kayu Eboni dengan nilai 17,33385   dari beberapa pilihan alternatif  kayu yang ada. Membuktikan hasil dari metode MOORA, maka dilakukan responden secara langsung dengan memberikan hasil metode kepada pakar pembuat gitar. Dari 15 pakar pembuat gitar, 13 mengatakan setuju dengan peringkat 3 terbesar, dan 2 mengatakan kurang setuju. Sehingga ditemukan tingkat akurasi berdasarkan penilaian pakar sebesar 86,67 %. AbstractThis study aims to assist wood craftsmen in Dongkelan, Krapyak, Yogyakarta in determining the best wood to be used as guitar material, because there are frequent complaints from buyers that the material used for guitar is rotten quickly and is dull in terms of color. Based on these problems, a solution was sought using the Multi Objective Optimization on the basic of Ratio Analysis (MOORA) Decision Support System method and assisted by experts in determining the right criteria related to determining the best wood used in making guitar materials, after a long discussion found the results. the right criteria based on the problem, in the form of wood strength criteria, wood grain, texture, and wood weight. All of these criteria are then processed using the MOORA method, with the data used as much as 29 types of wood data, which are obtained from craftsmen in the area. After processing, the 3 best woods that are suitable for use as a guitar-making material are Bubinga wood with a value of 18.36785, Bocote wood with a value of 17.333385, and Eboni wood with a value of 17.333385 from several alternative wood choices. . Proving the results of the MOORA method, the respondents directly gave the results of the method to guitar-making experts. Of the 15 expert guitar makers, 13 said they agreed with the third largest ranking, and 2 said they disagreed. So that it found the level of accuracy based on expert judgment of 86.67%.
Fuzzy Inference System Mamdani dalam Prediksi Produksi Kain Tenun Menggunakan Rule Berdasarkan Random Tree Tundo, Tundo; Saifullah, Shoffan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 3: Juni 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022924212

Abstract

Kain tenun merupakan salah satu produk yang diminati oleh banyak orang. Hal ini menjadi pemicu produsen untuk meningkatkan pengelolahannya. Salah satu usaha yang dilakukan adalah memprediksi produksi yang dapat dilakukan untuk mendapatkan jumlah optimal yang diperoleh, sehingga mendapatkan keuntungan yang besar. Dalam penelitian ini, untuk mendapatkan prediksi jumlah produksi kain tenun dilakukan dengan perhitungan komputerisasi menggunakan metode logika fuzzy Mamdani. Metode ini menggunakan konsep pohon keputusan random tree dalam membentuk rule. Rule yang dibuat berdasarkan pada kriteria dalam penentuan jumlah produksi kain tenun, diantaranya yaitu biaya produksi, permintaan, dan stok. Konsep pohon keputusan random tree dalam penelitian ini digunakan untuk membuat rule secara otomatis berdasarkan data yang tersedia. Pembentukan rule ini berdasarkan data-data kain tenun dan diimplementasikan dalam random tree, sehingga tidak perlu menggunakan pakar. Penelitian ini membuktikan bahwa prediksi yang dilakukan dapat membangun rule dengan nilai akurasi sebesar 100%. Hasil perbandingan prediksi dengan produksi sesungguhnya memiliki persentase error sebesar 3% dengan nilai kebenaran sebesar 97% (berdasarkan perhitungan Average Forecasting Error Rate (AFER)). Oleh karena itu ketika diimplementasikan dalam fuzzy Mamdani dapat menghasilkan prediksi produksi kain tenun yang optimal. AbstractWoven fabric is a product that is in demand by many people. It triggers producers to improve their management. One of the efforts made is to predict the production that can be done to get the optimal amount obtained, to get a significant profit. In this study, to obtain a prediction of the amount of woven fabric production is done by computerized calculations using the Mamdani fuzzy logic method. This method uses the concept of a random tree decision tree in forming rules. The rules are made based on the criteria in determining the amount of woven fabric production, including production costs, demand, and stock. The concept of a random tree decision tree in this study automatically generates rules based on available data. This rule's formation is based on woven fabric data and is implemented in a random tree, so there is no need to use experts. This study shows that the predictions made can build rules with an accuracy value of 100%. The comparison of predictions with actual production has an error percentage of 3% with a truth value of 97% (based on the calculation of the Average Forecasting Error Rate (AFER)). When implemented in Fuzzy Mamdani, it can produce optimal woven fabric production predictions with predicted results less than the actual production.
Analisis Tingkat Kepuasan Mahasiswa dalam Kegiatan UKM di Stikom CKI Menggunakan Algoritma Naive Bayes Arvianto, Ramdani; Tundo, Tundo; Tresia, Eflin; Januarsyah, Firly
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 8 No. 2 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/jmika.Vol8No2.pp206-214

Abstract

The main problem in increasing the level of student satisfaction in UKM activities at STIKOM CKI is caused by various factors, including the rare frequency of meetings and the multiplication of material without significant development. This dissatisfaction can reduce students' interest in actively participating in UKM activities, which should be a source of positive experiences and skills development. Well-managed SME activities can be an important means of developing soft skills such as leadership, team collaboration and communication skills. However, when these activities are not managed well, the results can be counterproductive, causing frustration and dissatisfaction among students. Based on these problems, an application of the Naive Bayes algorithm will be carried out to determine the satisfaction level of STIKOM CKI students with 80 training data and 6 test data. After calculating, an accuracy rate of 83.33%, recall of 33.33%, and precision are obtained. 100%. Therefore, it is important to manage student satisfaction levels to avoid being counterproductive. One of the appropriate data mining algorithms to solve the case above is to use the Naive Bayes algorithm.
Co-Authors Abdus Salam, Abdus Ahmad Satria Rizqi Maula Akbar, Rasyan Akbar, Riolandi Akbar, Yuma Alief Prima Gani Amelia, Ika Arinal, Veri Arvianto, Ramdani Aryanti, Putri Gea Aula, Raisah Fajri Aulia Nur Septiani Azhar, Anisah Nurul Betty Yel, Mesra Betty Yel, Mesra Bobby Arvian James Dadang Iskandar Mulyana` Dalail Dalail Dalail, Dalail Devia, Elmi Dewantara, Rizki Dewanti, Elsa Mayorita Dharmawan, Tio Doni Kurniawan Doni Kurniawan Eldina, Ratih Enny Itje Sela Fakhrurrofi Fakhrurrofi Fakhrurrofi, Fakhrurrofi Faldo Satria Faridatun Nisa Gatra, Rahmadhan Hadi Gunawan, Hadi Haryati Heri Mahyuzar Heri Mahyuzar James, Bobby James, Bobby Arvian Januarsyah, Firly Joko Sutopo Julianda, Rindy Junaidi Junaidi Kasiono, Roy Kastum Kastum Kastum, Kastum Kevin Arya Josaphat Sitompul Khafid Nurohman Khana, Rajes Laras Sitoayu Lutfi Nugrahaini M. A. Burhanuddin Maharani, Delia Maharani, Shinta Aulia Mahardika, Fajar Mahyuzar, Heri Marliani, Tiara Marthy, Nicola Mohd Khanapi Abd Ghani Mubarak, Zulfikar Yusya Muhammad Nurdin Muhammad Syazidan Nabilah, Laila Nandang Sutisna Nisa, Faridatun Nizar, Amin Nugraha, Pramudya Nugrahaini, Lutfi Nugroho, Agung Yuliyanto Nugroho, Wisnu Dwi Nuradi, Fahmi Nurohman, Khafid Opi Irawansah, Opi Paidi, Imam Prayogo, Fadillah Abi Priyanto, Imansyah Purnasiwi, Rona Guines Purwasih, Intan Putri Wibowo, Salsabila Qolbi, Rofika Rachmat Hidayat Insani Rachmawati, Dea Noer Raden Dewa Saktia Purnama Raffiudin, Muhammad Raihanah, Syifa Ramadhan, Abhirama Huga Ramadhani, Devika Azahra Rasiban Ridho Akbar Rizki Maulana, Rizki Romadan, Diva Putra Saidah, Andi Saifullah, Shoffan Saktia Purnama, Raden Dewa Sarimole, Frencis Matheos Setiawan, Kiki Shofwatul ‘Uyun Sodik SOPAN ADRIANTO Sopan Adrianto Sri Lestari Sugeng Sugiono Sugiono Sugiyono Sugiyono Sugiyono Suropati, Untung Sutisna, Nandang Syani, Muhammad Tampubolon, Parlindungan Tasti, Andi Thalita Tiara Ratu Alifia Tresia, Eflin Tri Wahyudi Tundo Tundo Untung Suropati Wafiqi, Achmad Ulul Azmi Wagiman, Wagiman Waloeya, Farhan Adriansyah Wijonarko, Panji Yacob, Galih Satria