p-Index From 2021 - 2026
9.059
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Informatika Komputer Teknika Bulletin of Electrical Engineering and Informatics Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Informatika dan Teknik Elektro Terapan CESS (Journal of Computer Engineering, System and Science) Jurnal CoreIT JURNAL KAJIAN TEKNIK ELEKTRO JTAM (Jurnal Teori dan Aplikasi Matematika) METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi INTECOMS: Journal of Information Technology and Computer Science KACANEGARA Jurnal Pengabdian pada Masyarakat Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) IJID (International Journal on Informatics for Development) JURIKOM (Jurnal Riset Komputer) Jurnal Tekno Kompak TEKNOKOM : Jurnal Teknologi dan Rekayasa Sistem Komputer Jurnal Informatika dan Rekayasa Perangkat Lunak Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Indonesian Journal of Electrical Engineering and Computer Science Bubungan Tinggi: Jurnal Pengabdian Masyarakat Jurnal Manajemen Informatika Jayakarta International Journal Software Engineering and Computer Science (IJSECS) Berdikari : Jurnal Pengabdian kepada Masyarakat ABDINE Jurnal Pengabdian Masyarakat Malcom: Indonesian Journal of Machine Learning and Computer Science Technology and Informatics Insight Journal KAMI MENGABDI Journal of Data Science Theory and Application Journal of Digital Business and Management Prosiding Seminar Nasional Rekayasa dan Teknologi (TAU SNAR- TEK) Jurnal Indonesia : Manajemen Informatika dan Komunikasi Edusight International Journal of Multidisciplinary Studies (EIJOMS) International Journal of Law Social Sciences and Management Computer Journal
Claim Missing Document
Check
Articles

Penerapan Data Mining Menggunakan Algoritma Apriori pada Brand Milenials Cafe Gunawan, Hadi; Tundo, Tundo; Ramadhani, Devika Azahra; Waloeya, Farhan Adriansyah
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 8 No. 2 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46880/jmika.Vol8No2.pp215-221

Abstract

Millennials Café is a cafe that just opened in March 2024, in an effort to stay relevant and competitive in this field, Millennials Café needs to continue to innovate and adjust to customer preferences. One way is to utilize data mining technology. The Apriori algorithm is one of the data mining technologies that can be used. The application of the apriori algorithm to the Milenials Café transaction data aims to find association rules to be able to generate frequencies and relationships between one or more items in the transaction data in the Milenials Café. This research produces 33 association rules that can help the sales strategy at Milenials Café. The following are the association rules with the highest confidence value, namely the Thai Tea menu, Milo Dinasourus, 100% Millennials Pizza, Hezelnut Chocolate, Oreo Cookies and Cream Shake 97%. Millennials Pizza, Fried Potatoes 96%. The 33 rules that already exist can be used as a reference for the owner of Millennials Café to create a sales strategy that can increase cafe revenue.
Pelatihan Penggunaan Tools WEKA untuk Kepentingan Proses Data Mining di ITS NU Pekalongan Tundo, Tundo; Betty Yel, Mesra; Sutisna, Nandang; Kastum, Kastum; Adrianto, Sopan
ABDINE: Jurnal Pengabdian Masyarakat Vol. 4 No. 1 (2024): ABDINE : Jurnal Pengabdian Masyarakat
Publisher : Sekolah Tinggi Teknologi Dumai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52072/abdine.v4i1.826

Abstract

Pada pelatihan ini, penggunaan WEKA akan fokus dalam hal data mining, yang artinya pengelolahan data dan menggali data menjadi suatu knowledge dan visualisasi yang memberikan manfaat informasi yang berguna. Banyak cara dalam mengelolah data dan menggali data untuk dijadikan sebuah visual, salah satunya dengan menggunakan aplikasi WEKA, dimana cara ini juga membantu mahasiswa dalam menentukan tema skripsi yang didalamnya mengandung algoritma dan metode data mining. Bentuk cara dalam membantu mahasiswa tersebut, salah satunya yaitu memberikan pelatihan penggunaan aplikasi WEKA untuk membantu mahasiswa dalam mengelolah data dan menggali data menjadi sebuah visual dan knowledge. Pelatihan dilakukan di ITS NU Pekalongan dengan tujuan menambahkan wawasan baru kepada seluruh mahasiswa terkait proses pembuatan visualisasi data dengan WEKA. Kegiatan pelatihan ini masih fokus ke pembuatan visualisasi data berupa rule dari algoritma decision tree J48. Kegiatan dilaksanakan dalam bentuk pendampingan dan praktik dalam penggunaan aplikasi WEKA mulai dari penyampaian materi data mining dan tools WEKA, dilanjutkan praktik cara membuat visualisasi data berupa rule otomatis. Berdasarkan hasil kuesioner menunjukkan bahwa 92% peserta merasa WEKA mudah digunakan untuk proses pengolahan data dan menggali data.
Prediksi Jumlah Produksi Genteng di Kebumen Berdasarkan Fuzzy Inference System Mamdani Tundo, Tundo; Mahyuzar, Heri
Technology and Informatics Insight Journal Vol. 1 No. 2 (2022): TIIJ
Publisher : LP3M Universitas Putra Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32639/tiij.v1i2.223

Abstract

Tile is one product that is in demand by many people. This is a trigger for producers to improve their management. One of the efforts made is to predict the production that can be done to get the optimal amount obtained, so as to get a big profit. In this study, to predict the amount of tile production, computerized calculations were carried out using the Mamdani fuzzy logic method. This method uses the concept of monotonous rules, which are then re-selected by experts in tile production by choosing rules that match the actual situation in the agency. This study proves that predictions made with monotonous rules, then re-selection by experts are able to handle the process of predicting tile production. The results of the comparison of predictions with actual production have an error percentage of 28.45%, with a truth of 71.55% (based on the calculation of the Average Forecasting Error Rate (AFER)). Therefore, when implemented in the Fuzzy Inference System, Mamdani can produce optimal tile production predictions.
PENERAPAN ALGORITMA METODE NAÏVE BAYES UNTUK PENENTUAN PENERIMAAN BANTUAN PROGRAM INDONESIA PINTAR (PIP) Priyanto, Imansyah; Dewanti, Elsa Mayorita; Tundo, Tundo; Nurdin, Muhammad; Kasiono, Roy
Jurnal Manajamen Informatika Jayakarta Vol 4 No 2 (2024): JMI Jayakarta (April 2024)
Publisher : Sekolah Tinggi Manajemen Informatika dan Komputer Jayakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52362/jmijayakarta.v4i2.1355

Abstract

The Smart Indonesia Program (PIP) through the Smart Indonesia Card (KIP) is a government program offered in the form of direct education financing to students (6-21 years). KIP is an improvement part of the Poor Student Assistance (BSM) program since the end of 2014. The target of PIP at SMP PGRI 1 Cilacap is still not well targeted, due to the lack of criteria for KKS recipients. Therefore, the author added criteria for KKS recipients in the research. This research was created based on previously existing data, namely 100 training data and 9 test data using the Naïve Bayes data mining method and with 6 attributes, namely parents' occupation, number of dependents, parents' income, KIP recipients, KPS recipients, KKS recipients. The accuracy test results obtained were 88.89% and the Recall calculation was 85.71%.
Menumbuhkan kesadaran masyarakat terkait internet sehat: Penggunaan aplikasi aman dan edukatif bagi anak-anak Tundo, Tundo; Wijonarko, Panji; Salam, Abdus; Tampubolon, Parlindungan; James, Bobby Arvian
KACANEGARA Jurnal Pengabdian pada Masyarakat Vol 7, No 1 (2024): Februari
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/kacanegara.v7i1.1835

Abstract

Internet sehat adalah aktifitas manusia yang sedang melakukan kegiatan online baik browsing, upload, download, chating, dan sosial media secara tertib, baik dan beretika sesuai norma dan aturan berlaku dilingkungan masyarakat. Aktifitas penggunaan internet sehat sebaiknya mulai diterapkan sejak dini, agar moral anak-anak terjaga dan tidak rusak akibat penggunaan internet. Permasalahan yang dihadapi oleh masyarakat kampung Bugis, Desa Jayasakti, Kecamatan Muara Gembong masih sangat minim pengetahuan terkait penggunaan internet sehat yang tepat berdasarkan tujuan penggunaan yang tidak merusak moral bangsa baik untuk tingkat dewasa ataupun anak-anak, tetapi sasaran pengabdian ini fokus kepada anak-anak sebagai generasi masa depan agar dapat menggunakan internet secara benar dan tepat, sehingga kegiatan ini bertujuan untuk meningkatkan kesadaran dan pengetahuan penggunaan internet sehat bagi siswa di SMP N 2 Muara Gembong dalam menumbuhkan kesadaran dalam penggunaan aplikasi aman dan peningkatan edukatif bagi anak-anak agar tidak salah dalam menggunakan aplikasi serta berbagai aplikasi yang direkomendasikan untuk digunakan dan tidak boleh digunakan bagi anak-anak. Hasil kegiatan pengabdian menunjukkan bahwa guru dan siswa/i mengikuti kegiatan dengan sangat antusias. Melalui pendekatan yang terarah dan interaktif, siswa telah memperoleh pengetahuan yang lebih mendalam mengenai penggunaan aplikasi yang tepat bagi anak-anak. 
IMPLEMENTASI PENGGUNAAN ALGORITMA GREEDY BEST FIRST SEARCH UNTUK MENENTUKAN RUTE TERPENDEK DARI CILACAP KE YOGYAKARTA Saktia Purnama, Raden Dewa; Nisa, Faridatun; Tundo, Tundo; Nurohman, Khafid; Fakhrurrofi, Fakhrurrofi; Nugrahaini, Lutfi; Dalail, Dalail
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 2 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i2.4068

Abstract

Abstrak. Saat kita berencana untuk melakukan perjalanan, pertimbangan mengenai rute perjalanan menjadi hal yang umum dipertimbangkan. Oleh karena itu, perlu dipikirkan opsi perjalanan yang optimal dari satu tempat ke tujuan, terutama jika menuju destinasi wisata, agar perjalanan dapat diselesaikan dengan efisien. Selain itu, aspek waktu juga harus diperhitungkan agar tidak menghabiskan terlalu banyak waktu dalam perjalanan. Tujuan dari penelitian ini adalah untuk menemukan rute alternatif terpendek dari UNUGHA Cilacap (node 1) ke Titik Nol Kilometer Yogyakarta (node 83), dengan mempertimbangkan faktor jarak dan waktu menggunakan algoritma greedy. Untuk menentukan rute perjalan dengan jarak terpendek dan waktu yang cepat dapat dilakukan dengan menggunakan solusi pendekatan algoritma greedy. Algoritma Greedy membentuk solusi langkah perlangkah dan terdapat beberapa pilihan yang meberikan hasil terbaik dengan membuat pilihan optimum lokal pada setiap langkah sehingga diperoleh solusi optimum global. Metode pengumpulan data menggunakn teknik dasar studi literatur, observasi dan memahami permasalahan objek penelitian selanjutnya dilakukan alur penelitian untuk memudahkan dalam implementasi analisa pemilihan rute. Berdasarkan hasil dan pembahasan pada objek penelitian diperoleh pencarian rute terpendek dari node 1 menuju node 83 dengan jarak 345,8 kilometer merupakan alternif terbaik dari 3 rute alternatif.Abstract. When we plan to travel, it is common to consider the route. Therefore, it is necessary to think about the optimal travel options from one place to the destination, especially if it is to a tourist destination, so that the journey can be completed efficiently. In addition, the time aspect must also be taken into account so as not to spend too much time travelling. The purpose of this research is to find the shortest alternative route from UNUGHA Cilacap (node 1) to Yogyakarta Kilometer Zero Point (node 83), by considering the distance and time factors using the greedy algorithm. To determine the travel route with the shortest distance and fast time can be done by using the greedy algorithm approach solution. The Greedy Algorithm forms a step-by-step solution and there are several options that give the best results by making local optimum choices at each step so that a global optimum solution is obtained. The data collection method uses the basic techniques of literature study, observation and understanding the problems of the research object, then the research flow is carried out to facilitate the implementation of route selection analysis. Based on the results and discussion of the research object, it was found that searching for the shortest route from node 1 to node 83 with a distance of 345.8 kilometers was the best alternative out of 3 alternative routes.
Fuzzy Inference System Tsukamoto–Decision Tree C 4.5 in Predicting the Amount of Roof Tile Production in Kebumen Tundo, Tundo; Mahardika, Fajar
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 2 (2023): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i2.13034

Abstract

Tile is a product that is in great demand by many people. This has become a trigger for producers to improve their management. The company's tile production management is still experiencing problems, namely frequent miscalculations in determining the agreement that must be issued in making tile production from customer requests. One of the efforts made is to predict the production that can be done to get the optimal amount obtained, to get a big profit. In this study, to obtain a prediction of the amount of tile production, computerized calculations were carried out using the Tsukamoto fuzzy logic method. This method uses the concept of rules from the C 4.5 decision tree in the building to make it easier to determine the rules that are built without having to consult an expert because C 4.5 will study existing datasets to serve as a reference in forming these rules according to conditions that often occur. The modeling results produce relevant rules after being compared with the actual results. The results of the comparison of predictions with actual production have an error percentage of 29.34%, with a truth of 70.66% (based on the calculation of the Average Forecasting Error Rate (AFER)). Therefore when implemented in the Tsukamoto Fuzzy Inference System it can produce predictions of tile production that are quite optimum. It is said to be quite optimum because all customer requests are met, either generated by the production prediction itself or the prediction results are added up with inventory data, and all predictions are close to actual production.
Application of the Apriori Algorithm in Transaction Data in Rumah Makan Murah Marthy, Nicola; Tundo, Tundo; Nabilah, Laila; Maharani, Delia
Edusight International Journal of Multidisciplinary Studies Vol. 1 No. 2 (2024): Edusight International Journal of Multidisciplinary Studies
Publisher : Yayasan Meira Visi Persada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69726/eijoms.v1i2.36

Abstract

This research aims to apply the Apriori algorithm in transaction data analysis at a budget-friendly restaurant to identify purchasing patterns and relationships between frequently bought items. By leveraging historical transaction data, the Apriori algorithm can discover significant associations among various menu items, which can then be used to develop more effective marketing strategies, optimize product placement, and boost sales. The research process includes the collection and preprocessing of transaction data, application of the Apriori algorithm for association rule extraction, and analysis and interpretation of the results. The findings from this study are expected to provide valuable insights for budget-friendly restaurant managers to develop more efficient, data-driven business strategies.
Application of the K-Nearest Neighbor Method in Determining Laptop for Classes Qolbi, Rofika; Tundo, Tundo; Putri Wibowo, Salsabila; Akbar, Yuma
International Journal of Law Social Sciences and Management Vol. 1 No. 3 (2024): International Journal of Law Social Sciences and Management
Publisher : Yayasan Meira Visi Persada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.69726/ijlssm.v1i3.31

Abstract

Laptops are one of the basic needs in today's modern life. Laptops are used in a wide variety of activities such as work, study, and entertainment. This research aims to be able to predict the class of laptops in the Ilda Computer store. In this process, the K-Nearest Neighbor Algorithm (KNN) method will be applied. There are 2 types of data that will be used in this study, namely training data totaling 80 data and test data as many as 6 data. In the data, there are 7 criteria that will be used, namely Price, Screen Size, Resolution, OS, RAM, Processor Type, and Laptop Class. In this study, it was obtained that the application of the KNN Algorithm can help in determining the prediction of the Laptop Class. And also the application of the KNN algorithm with K=3 obtained the best performance results with an accuracy value of 50%, a presicion of 50%, and a recall of 66%. Meanwhile, with K=4, the best performance results were obtained with an accuracy value of 50%, presicion of 66%, and recall of 50%. Finally, the K=5 obtained the best performance with an accuracy value of 66%, a presicion of 33%, and a recall of 100%.
Subjectivity Tracking System for Poor Scholarship Recipients at Elementary School Using the MOORA Method Tundo, Tundo
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 6, No 3 (2022): July
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v6i3.8373

Abstract

This research was conducted because of complaints from several parents at Elementary School regarding recipients of the Poor Student Assistance (PSA) who were still less objective. Elementary School XY regularly conduct screening activities every year to select prospective PSA recipients. This selection is made so that the recipients of this assistance are students entitled to it. Some students should be accepted as a selection committee but do not mistake of choosing some students who have kinship or subjective matters. Therefore, this study aims to explore and create applications that apply the Multi Objective Optimization to the basic  Ratio Analysis (MOORA) method, which is a method for determining students based on predetermined criteria. The criteria used are the value of report cards, student achievement, student activity, parental income, parental dependents, and home conditions. After conducting a search and implementation using the MOORA method in determining PSA recipients, it was found that there were some non-objective results where the student's criteria and final results were lower than some other students. However the Elementary School provided a recommendation to get PSA. If this happens again, then the importance of this system is to help objective selection. The accuracy results explained that 14.39% of PSA recipients were subjective. It was concluded that this research helps an objective decision and facilitates the decision maker in determining the best 3 recipients from each class at Elementary School XY.
Co-Authors Abdus Salam, Abdus Ahmad Satria Rizqi Maula Akbar, Rasyan Akbar, Riolandi Akbar, Yuma Alief Prima Gani Amelia, Ika Arinal, Veri Arvianto, Ramdani Aryanti, Putri Gea Aula, Raisah Fajri Aulia Nur Septiani Azhar, Anisah Nurul Betty Yel, Mesra Betty Yel, Mesra Bobby Arvian James Dadang Iskandar Mulyana` Dalail Dalail Dalail, Dalail Devia, Elmi Dewantara, Rizki Dewanti, Elsa Mayorita Dharmawan, Tio Doni Kurniawan Doni Kurniawan Eldina, Ratih Enny Itje Sela Fakhrurrofi Fakhrurrofi Fakhrurrofi, Fakhrurrofi Faldo Satria Faridatun Nisa Gatra, Rahmadhan Hadi Gunawan, Hadi Haryati Heri Mahyuzar Heri Mahyuzar James, Bobby James, Bobby Arvian Januarsyah, Firly Joko Sutopo Julianda, Rindy Junaidi Junaidi Kasiono, Roy Kastum Kastum Kastum, Kastum Kevin Arya Josaphat Sitompul Khafid Nurohman Khana, Rajes Laras Sitoayu Lutfi Nugrahaini M. A. Burhanuddin Maharani, Delia Maharani, Shinta Aulia Mahardika, Fajar Mahyuzar, Heri Marliani, Tiara Marthy, Nicola Mohd Khanapi Abd Ghani Mubarak, Zulfikar Yusya Muhammad Nurdin Muhammad Syazidan Nabilah, Laila Nandang Sutisna Nisa, Faridatun Nizar, Amin Nugraha, Pramudya Nugrahaini, Lutfi Nugroho, Agung Yuliyanto Nugroho, Wisnu Dwi Nuradi, Fahmi Nurohman, Khafid Opi Irawansah, Opi Paidi, Imam Prayogo, Fadillah Abi Priyanto, Imansyah Purnasiwi, Rona Guines Purwasih, Intan Putri Wibowo, Salsabila Qolbi, Rofika Rachmat Hidayat Insani Rachmawati, Dea Noer Raden Dewa Saktia Purnama Raffiudin, Muhammad Raihanah, Syifa Ramadhan, Abhirama Huga Ramadhani, Devika Azahra Rasiban Ridho Akbar Rizki Maulana, Rizki Romadan, Diva Putra Saidah, Andi Saifullah, Shoffan Saktia Purnama, Raden Dewa Sarimole, Frencis Matheos Setiawan, Kiki Shofwatul ‘Uyun Sodik Sopan Adrianto SOPAN ADRIANTO Sri Lestari Sugeng Sugiono Sugiono Sugiyono Sugiyono Sugiyono Suropati, Untung Sutisna, Nandang Syani, Muhammad Tampubolon, Parlindungan Tasti, Andi Thalita Tiara Ratu Alifia Tresia, Eflin Tri Wahyudi Tundo Tundo Untung Suropati Wafiqi, Achmad Ulul Azmi Wagiman, Wagiman Waloeya, Farhan Adriansyah Wijonarko, Panji Yacob, Galih Satria