p-Index From 2020 - 2025
6.528
P-Index
This Author published in this journals
All Journal Jurnal Peternakan Integratif JAM : Jurnal Aplikasi Manajemen Infotech Journal MODELING: Jurnal Program Studi PGMI JTP - Jurnal Teknologi Pendidikan Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar Ilomata International Journal of Management E-Link Journal Jatilima : Jurnal Multimedia Dan Teknologi Informasi Al-Hikmah Media Dakwah, Komunikasi, Sosial dan Kebudayaan Ilomata International Journal of Management Jurnal Pendidikan Britain International of Humanities and Social Sciences (BIoHS) Journal Ta'dib Al Intisyar: Jurnal Pendidikan Bahasa Arab Sibatik Journal : Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan Jurnal Penyuluhan Pertanian Economicus: Jurnal Ekonomi dan Manajemen JEMSI (Jurnal Ekonomi, Manajemen, dan Akuntansi) MES Management Journal Jurnal Pengabdian Masyarakat Indonesia (JPMI) Peka : Jurnal Pendidikan Ekonomi Akuntasi FKIP UIR Pekanbaru Jurnal Akuntansi Manajemen (JAKMEN) Linguisic, Literature, and English Education Linggau Journal Science Education (LJSE) Bakti Nusa Linggau Al-Manaj Journal of Research and Publication Innovation Jurnal Peternakan Integratif Indo-Fintech Intellectuals: Journal of Economics and Business Pandawa : Pusat Publikasi Hasil Pengabdian Masyarakat MILRev: Metro Islamic Law Review Jurnal Al Mahsuni: Jurnal Studi Islam dan Ilmu Pendidikan Alpatih: Jurnal Inovasi Pengabdian Masyarakat Semeru Jurnal Pengabdian Masyarakat Multidisciplinary Indonesian Center Journal CITACONOMIA : Economic and Business Studies International Journal of Economics and Management Research
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Akuntansi Manajemen (JAKMEN)

Prediksi Tren Risiko Keuangan Perusahaan Berdasarkan Model Machine Learning (ARIMA) : Tinjauan Literatur Sunaryo, Deni; Hamdan; Anggriani, Alfina; Winata, Cecilia; Alumi, Dian Denta
Jurnal Akuntansi Manajemen (JAKMEN) Vol. 3 No. 2 (2024)
Publisher : Universitas Serang Raya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30656/jakmen.v3i2.9704

Abstract

This research discusses the role of artificial intelligence (AI) technology in improving company financial risk predictions through the application of the Autoregressive Integrated Moving Average (ARIMA) model supported by machine learning. Using systematic literature analysis, this research explores how ARIMA, with the help of AI, can be applied in financial risk management to identify short-term and long-term trends, detect financial anomalies, and improve the quality of decision making. ARIMA models based on machine learning enable faster and more accurate identification of abnormal financial patterns, which is very important in helping companies respond to risks that have the potential to disrupt financial stability. Key findings show that the combination of ARIMA and AI not only makes it easier to analyze large and complex financial data, but also expands the potential of data-driven financial risk management by providing deeper insights. By integrating machine learning, ARIMA becomes more effective in handling dynamic and fluctuating financial data, so companies can anticipate risks more proactively. This study underscores the enormous potential of AI and ARIMA in helping companies build adaptive, high-precision risk prediction systems, offering new opportunities to strengthen financial resilience in an ever-changing business environment.