Claim Missing Document
Check
Articles

ANALISIS KINERJA PEMELIHARAAN BERDASARKAN SAFETY PERFORMANCE INDICATOR MENGGUNAKAN RELIABILITY MAPPING Mufti Arifin
Jurnal Teknologi Kedirgantaraan Vol 5 No 1 (2020): Jurnal Teknologi Kedirgantaraan
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jtk.v5i1.275

Abstract

–ICAO Annex 19 Safety Management required safety measurement using Safety Performance Indicator (SPI). SPI parameter determined by operator. One of example is maintenance parameter related with accident or incident. SPI maintenance consist of Pilot Report, Dispatch Reliability, Deferred Maintenance (DMI), Service Difficulty Report, Air Turn Back, Rejected Take Off, and Repeated Defect. Some of SPI parameters have correlations. Simulation using reliability mapping with varies maintenance scenario to see correlation between Deferred Maintenance Item, Repeated Defect, and Technical Interruption which is used for Dispatch Reliability calculation has been done. Maintenance performance analysis also simulated with this method. The result shows cause effect correlation in two and one way between three SPI parameters. Maintenance performance could be predicted using reliability mapping mainly for time needed for defect rectification and repeated defect, repeated DMI, or repeated technical interruption
Perencanan Maintenance Store Pada Maskapai Cargo RRR venza, Venza Fawwaz Tsulatsa; Mufti Arifin; Simon Sindhu H
Jurnal Mahasiswa Dirgantara Vol. 3 No. 2 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i2.109

Abstract

Perencanaan maintenance store yang optimal sangat penting bagi keberlangsungan operasional maskapai kargo. Penelitian ini bertujuan untuk persediaan sparepart dan tools yang dibutuhkan, kebutuhan maintenance store dan penempatan persediaan sparepart pada operasional pesawat kargo. Fokus utama adalah pada optimalisasi penyimpanan dan efisiensi operasional. Metodologi penelitian melibatkan pengumpulan data pekerjaan transit check dan daily check, Menentukan kebutuhan parts dan tools, menentukan kebutuhan ruangan, rancangan penempatan dan analisis penempatan. Hasil penelitian menunjukan bahwa sparepart yang sering digunakan yaitu locking wire, brake, majun,  wheel, oil engine, greasee, axle jack, torque wrench dapat terpenuhi dengan baik untuk mendukung kelancaran dan efisiensi operasional. hasil perhitungan kebutuhan sparepart dan tools ruang minimal yang diperlukan untuk maintenance store ini adalah 50,4 m² serta kebutuhan maintenance store ini sudah terpenuhi dengan perencanaan luas sebesar 66 m², pengelolaan penempatan sparepart dan tools berukuran besar dan berat diletakan dibawah sedangkan berukuran kecil diletakan di suatu rak, persentase  luas kebutuhan dari luas perencanaan yaitu 76%.   Optimal maintenance store planning is very important for the continuity of cargo airline operations. This study aims to inventory spare parts and tools needed, maintenance store requirements and placement of spare parts inventory on cargo aircraft operations. The main focus is on storage optimization and operational efficiency. The research methodology involves collecting data on transit check and daily check work, determining the need for parts and tools, determining space requirements, placement design and placement analysis. The results of the research show that spare parts that are often used, namely locking wire, brakes, magazines, wheels, engine oil, grease, axle jacks, torque wrench can be fulfilled properly to support smooth and efficient operations. the results of the calculation of the need for spare parts and tools the minimum space required for this maintenance store is 50.4 m² and the needs of this maintenance store have been met with a planning area of 66 m², the management of the placement of large and heavy spare parts and tools is placed below while small ones are placed on a shelf, the percentage of the required area of the planning area is 76%.
Analisis Operasional Bandara Berdasarkan Konfigurasi Terminal Penumpang untuk Peningkatan Kapasitas Bandara Studi Kasus Bandara Kalimarau Kanda Anantariyanto Alam Tasti; Mufti Arifin; Erna Shevilia
Jurnal Mahasiswa Dirgantara Vol. 3 No. 2 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i2.115

Abstract

Bandara Kalimarau merupakan gerbang utama transportasi udara di Kabupaten Berau dan berperan penting dalam mendukung sektor pariwisata, seperti Pulau Derawan, Pulau Kakaban, dan destinasi wisata lainnya. Bandara ini berlokasi di Kabupaten Berau, Provinsi Kalimantan Timur. Seiring meningkatnya jumlah penumpang, Pengembangan Terminal dan Apron menjadi kebutuhan mendesak agar kapasitas layanan tetap optimal. Penelitian ini menganalisis operasional bandara berdasarkan konfigurasi terminal penumpang menggunakan metode Typical Peak Hour Passenger (TPHP) untuk mengantisipasi pertumbuhan jumlah penumpang dalam 10 tahun ke depan. Data historis 2005–2022 digunakan sebagai dasar peramalan menggunakan metode persentase pertumbuhan penumpang sebesar 10,9% dengan perkiraan jumlah penumpang tahun 2033 sebanyak 1.243.266 penumpang dengan menggunakan metode Typical Peak Hour Passenger (TPHP) yang ditetapkan FAA. Hasil proyeksi menunjukkan peningkatan signifikan dalam jumlah penumpang, sehingga diperlukan optimalisasi kapasitas terminal melalui penambahan fasilitas tanpa mengubah struktur utama bangunan. Selain itu, perluasan apron juga menjadi solusi untuk menampung peningkatan jumlah pergerakan pesawat. Dengan mengacu pada ICAO Annex 14, luas apron yang diperlukan pada tahun 2033 diproyeksikan mencapai lebar 9.975 m² dan Panjang 255,73 m2 untuk memastikan kelancaran operasional bandara. Penelitian ini diharapkan menjadi referensi bagi pengembangan Bandara Kalimarau guna mendukung pertumbuhan pariwisata dan meningkatkan kualitas layanan transportasi udara.   Kalimarau Airport is the main gateway for air transportation in Berau Regency and plays an important role in supporting the tourism sector, such as Derawan Island, Kakaban Island, and other tourist destinations. This airport is located in Berau Regency, East Kalimantan Province. As the number of passengers increases, Terminal and Apron Development becomes an urgent need so that service capacity remains optimal. This study analyzes airport operations based on the configuration of the passenger terminal using the method Typical Peak Hour Passenger (TPHP) to anticipate the growth in the number of passengers in the next 10 years. Historical data from 2005–2022 is used as the basis for forecasting using the passenger growth percentage method of 10,9% with an estimated number of passengers in 2033 of 1,243,266 passengers using the method Typical Peak Hour Passenger (TPHP) set by the FAA. The projection results show a significant increase in the number of passengers, so it is necessary to optimize terminal capacity by adding facilities without changing the main structure of the building. In addition, expanding the apron is also a solution to accommodate the increasing number of aircraft movements. Referring to ICAO Annex 14, the apron area required in 2033 is projected to reach a width of 9,975 m² and a length of 255.73 m2 to ensure smooth airport operations. This research is expected to be a reference for the development of Kalimarau Airport to support tourism growth and improve the quality of air transportation services.
Perencanaan Pengadaan Spare Packing Dan Seal Pada Perusahaan XYZ Menggunakan Metode Reorder Point Belnov, Syaddad Husaini; Mufti Arifin; Ayu Martina
Jurnal Mahasiswa Dirgantara Vol. 3 No. 1 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i1.116

Abstract

Perusahaan jasa pemeliharaan pesawat udara tentunya memerlukan perencanaan dan juga pengendalian persediaan bahan baku agar proses produksi di perusahaan tersebut dapat berjalan dengan baik. Salah satu metode untuk perencanaan pengadaan spare part yaitu menggunakan metode Reorder Point yang merupakan salah satu metode untuk manajemen persediaan spare part dengan tujuan utama untuk meminimalisir atau menekan suatu terjadinya kekurangan persediaan stok spare part. Pada penelitan ini akan dilakukan perhitungan Reorder Point Spare part Packing dan Seal berdasarkan data penggunaan sebelumnya. Tahapan penelitian ini dengan mengumpulkan data penggunaan, menghitung Safety Stock dan standar deviasi, menghitung kebutuhan Spare Part, dan melakukan perhitungan Reorder Point. Sehingga diperoleh tujuan penelitian yaitu diketahui kebutuhan Spare Packing dan Seal dalam 1 tahun sebanyak 576 Packing dan 479 Seal, serta mengetahui kebutuhan Safety Stock yang sudah didapat sebesar 42,50 Packing dan 21,14 Seal. Sehingga nilai Reorder Point yang dihasilkan adalah 94,34 Packing dan 53,14 Seal. Reorder point merupakan kebutuhan distribusi spare packing dan seal untuk meminimalisir adanya kekurangan Spare Part dan nilai Reorder Point yang didapat sehingga bisa dilakukan pemesanan secara berkala dalam perbulan untuk 1 tahun yang akan datang.   Aircraft maintenance service companies certainly require planning and also control of raw material inventory so that the production process in the company can run well. One method for planning spare part procurement is using the Reorder Point method which is one method for spare part inventory management with the main objective of minimizing or suppressing a shortage of spare part stock. In this study, the Reorder Point calculation of Packing and Seal Spare parts will be carried out based on previous usage data. The stages of this research are by collecting usage data, calculating Safety Stock and standard deviation, calculating Spare Part needs, and calculating Reorder Point. So that the research objectives are obtained, namely knowing the need for Spare Packing and Seal in 1 year as much as 576 Packing and 479 Seal, and knowing the Safety Stock needs that have been obtained as much as 42.50 Packing and 21.14 Seal. So that the resulting Reorder Point value is 94.34 Packing and 53.14 Seal. Reorder point is the need for distribution of spare packing and seal to minimize the shortage of Spare Parts and the Reorder Point value obtained so that regular orders can be made per month for the next 1 year.
Analisis Key Perfomance Indicator Pada Bandara Outstation Daniel Frederick Romulus Ginting; Mufti Arifin; Ayu Martina
Jurnal Mahasiswa Dirgantara Vol. 3 No. 1 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i1.119

Abstract

Seiring dengan perkembangan teknologi transportasi udara, bandara sangat berperan penting dalam mendukung aktivitas penerbangan. Bandara Outstation merupakan bandara di luar Bandara Base, sehingga sarana dan personil pemeliharaan tidak selengkap bandara base. Dalam mengelola Bandara Outstation, penting untuk memantau dan mengevaluasi kinerja bandara agar dapat menjamin kualitas layanan dan keamanan bagi para penumpang. Key Perfomance Indicator merupakan alat yang digunakan untuk mengukur seberapa baik kinerja suatu organisasi dalam mencapai tujuannya.penelitian ini menyimulasikan perhitungan Key Perfomance Indicator berdasarkan kebutuhan Ground Support Equipment, ketersediaan dan kondisi GSE. Berdasarkan simulasi maka bandara outstation dengan Key performance terbaik adalah bandara kertajati, dilakukan pada 8 bandara dan 6 jenis GSE. Hasil simulasi dapat di gunakan untuk memantau kinerja outstation secara menyeluruh dengan bantuan mymaps. perbandingan Key Perfomance Indicator dari bandara outstation memiliki jumlah nilai kinerja Gas Turbin Compressor tertinggi 75% pada bandara Kertajati (KJT), dan untuk nilai terendah 0% nilai kinerja GTC pada bandara Minangkabau (PDG).   The development of air transportation technology, airports play a very important role in supporting flight activities. Outstation airports are airports outside the base airport, so the facilities and maintenance personnel are not as complete as the base airport. In managing outstation airports, it is important to monitor and evaluate airport performance in order to ensure the quality of service and safety for passengers. Key Performance Indicator is a tool used to measure how well an organization performs in achieving its goals. This research simulates the calculation of Key Performance Indicator based on Ground Support Equipment needs, availability and condition of GSE. Based on the simulation, the outstation airport with the best Key performance is Kertajati airport, carried out at 8 airports and 6 types of GSE. The simulation results can be used to monitor the overall performance of the outstation with the help of mymaps. Key Performance Indicator comparison of outstation airports has the highest number of Gas Turbin Compressor performance values of 75% at Kertajati airport (KJT), and for the lowest value 0% GTC performance value at Minangkabau airport (PDG).
Analisis Perbandingan Fuel Consumtption Pada Pesawat boeing B737-800 Rute CGK-DMK dan CGK-AMQ Sofyan, Mohamad Fauzan; Freddy Franciscus; Mufti Arifin
Jurnal Mahasiswa Dirgantara Vol. 3 No. 2 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i2.120

Abstract

Fuel consumption merupakan perhitungan konsumsi bahan bakaryang digunakan pesawat udara melalui dua engine, perhitungan ini akan mengetahui banyaknya fuel yang digunakan oleh pesawat dengan rute CGK-DMK dan CGK-AMQ dengan menggunakan pesawat Boeing B737-800 dan jarak terbang yang hampir sama dengan estimasi waktu sekitar 3 jam 15 menit, fuel uplift setiap rute berbeda sesuai dengan Load sheet, perhitungan untuk perbedaan berat pesawat maka fuel yang dibakar lebih banyak, yang mempengaruhi berat pesawat sendiri ialah cargo dan penumpang yang naik di dalam pesawat. Fuel consumption digunakan dalam tiga fase, yaitu; Take off, cruising, dan landing. Analisis dilakukan yaitu dengan metode perhitungan data pertama melalui Load sheet dengan tujuan CGK-DMK Takeoff sebesar 70.654 kg dan tujuan CGK-AMQ Takeoff sebesar 71.560 kg. Hasil analisis menunjukkan pada kedua rute tersebut mendapatkan nilai sebesar 906 kg untuk perbedaannya, rute CGK-DMK fuel take off sebesar 2.245,8 kg, fuel cruise sebesar 5.345,34 kg, dan fuel landing sebesar 350 kg. rute CGK-AMQ fuel take off sebesar 2.193,6 kg, fuel cruise sebesar 5.207,33 kg, dan fuel landing sebesar 350 kg. Rute CGK-DMK traffic load sebesar 13.319 kg memerlukan 8.239,4 kg fuel, pada rute CGK-AMQ traffic load sebesar 15.798 kg dan memerlukan fuel sebesar 8.051 kg, traffic load memiliki selisih sebesar 2.479 kg dan fuel memiliki selisih sebesar 238,4 kg dengan faktor pengaruh dari traffic load dan ketinggian terbang.   Fuel consumption is a calculation of fuel consumption used by aircraft through two engines, this calculation will determine the amount of fuel used by aircraft with the CGK-DMK and CGK-AMQ routes using Boeing B737-800 aircraft and almost the same flight distance with an estimated time of around 3 hours 15 minutes, fuel uplift for each route is different according to the Loadsheet, the calculation for the difference in aircraft weight means that more fuel is burned, which affects the weight of the aircraft itself is the cargo and passengers on board the aircraft. Fuel consumption is used in three phases, namely; Take off, cruising, and landing. The analysis was carried out using the first data calculation method through the Loadsheet with the destination CGK-DMK Takeoff of 70,654 kg and the destination CGK-AMQ Takeoff of 71,560 kg. The results of the analysis showed that on both routes a value of 906 kg was obtained for the difference, the CGK-DMK route fuel take off was 2,245.8 kg, fuel cruise was 5,345.34 kg, and fuel landing was 350 kg. CGK-AMQ route fuel take off is 2,193.6 kg, fuel cruise is 5,207.33 kg, and fuel landing is 350 kg. CGK-DMK route traffic load is 13,319 kg requires 8,239.4 kg of fuel, on the CGK-AMQ route traffic load is 15,798 kg and requires 8,051 kg of fuel, traffic load has a difference of 2,479 kg and fuel has a difference of 238.4 kg with the influence factors of traffic load and flight altitude
Pengembangan Laboratorium Virtual untuk Pelatihan Perencanaan Pemeliharaan Pesawat Terbang Ahmad Buana Syamra Pratama Rahman; Mufti Arifin; Syarifah Fairuza
Jurnal Mahasiswa Dirgantara Vol. 3 No. 1 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i1.121

Abstract

Perencanaan pemeliharaan pesawat terbang merupakan aspek vital dalam menjaga keselamatan dan keandalan operasional penerbangan. Namun, pelatihan perencanaan pemeliharaan sering kali menghadapi keterbatasan akses terhadap pesawat nyata, kompleksitas prosedur, serta keterbatasan sumber daya laboratorium fisik. Kondisi ini menimbulkan kebutuhan mendesak akan solusi alternatif yang fleksibel, efektif, dan efisien untuk mendukung proses pembelajaran. Penelitian ini bertujuan untuk mengembangkan laboratorium virtual sebagai media pelatihan interaktif dalam perencanaan pemeliharaan pesawat, yang mampu mensimulasikan skenario dunia nyata dan meningkatkan pemahaman peserta terhadap prosedur teknis dan regulasi yang berlaku. Metode penelitian dilakukan melalui pendekatan rekayasa perangkat lunak, yang meliputi tahapan analisis kebutuhan, desain sistem, implementasi, dan evaluasi efektivitas penggunaan laboratorium virtual. Evaluasi dilakukan melalui uji coba terbatas terhadap mahasiswa teknik penerbangan yang mengikuti mata kuliah perencanaan pemeliharaan. Hasil penelitian menunjukkan bahwa laboratorium virtual ini mampu meningkatkan pemahaman konsep secara signifikan, mempercepat proses pembelajaran, serta memberikan pengalaman praktis yang mendekati kondisi operasional di industri penerbangan. Penggunaan laboratorium virtual juga dinilai efisien dalam hal waktu, biaya, dan ketersediaan alat pelatihan. Dengan demikian, pengembangan ini diharapkan dapat menjadi alternatif strategis dalam pendidikan teknik penerbangan yang berorientasi pada praktik dan kebutuhan industri.   Aircraft maintenance planning is a critical component in ensuring the safety and reliability of aviation operations. However, training in maintenance planning often encounters several challenges, including limited access to real aircraft, the complexity of procedures, and constraints in physical laboratory resources. These limitations highlight the urgent need for an alternative learning solution that is flexible, efficient, and capable of simulating real-world conditions. This study aims to develop a virtual laboratory as an interactive training medium for aircraft maintenance planning, designed to enhance learners’ understanding of technical procedures and regulatory compliance. The research was conducted using a software engineering approach, comprising stages of needs analysis, system design, implementation, and usability evaluation. The evaluation involved trial implementation with aerospace engineering students enrolled in a maintenance planning course. The results indicate that the virtual laboratory significantly improves conceptual understanding, accelerates the learning process, and provides practical experience comparable to real-world industry scenarios. Furthermore, the virtual platform proved to be cost-effective and resource-efficient in terms of time, tools, and accessibility. Therefore, this development is expected to serve as a strategic alternative in aviation engineering education, aligning with industry-oriented training needs
Analisis Fuel Leak Repetitive Problem Pada Pesawat Boeing 737 di Maskapai ABC Ahmad Al Muhraj; Mufti Arifin; Erna Shevilia
Jurnal Mahasiswa Dirgantara Vol. 3 No. 1 (2024): Jurnal Mahasiswa Dirgantara
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jmd.v3i1.122

Abstract

Masalah kebocoran bahan bakar pada mesin pesawat merupakan aspek krusial dalam menjaga keselamatan penerbangan dan efisiensi operasional. Penelitian ini bertujuan untuk menganalisis penyebab dan dampak kebocoran bahan bakar yang terjadi secara berulang, serta memberikan solusi untuk mengurangi frekuensi dan dampak kebocoran tersebut. Metodologi penelitian yang digunakan mencakup pengumpulan data dari insiden sebelumnya, termasuk data pilot report Maskapai ABC tahun 2018-2020, menganalisis penyebab akar masalah, serta simulasi kondisi operasi. Penelitian ini bertujuan untuk mengidentifikasi pola dan faktor yang berkontribusi terhadap masalah kebocoran. Dengan ini, keselamatan penerbangan dapat ditingkatkan dan kebocoran bahan bakar dapat diminimalisirkan. Dari hasil penelitian, ditemukan enam registrasi pesawat yang mengalami kebocoran bahan bakar berulang, salah satunya mengalami kebocoran bahan bakar berulang sebanyak tiga kali. Kebocoran tersebut disebabkan oleh berbagai faktor, yaitu keausan material, kesalahan dalam proses pemasangan, dan tidak adanya tindakan permanen. Adapun langkah-langkah yang dapat meminimalisir terjadinya kebocoran bahan bakar berulang seperti, melakukan inspeksi lebih sering pada komponen sistem bahan bakar, dan melakukan penggantian komponen berdasarkan rekomendasi pabrikan atau interval waktu yang sesuai meskipun komponen tidak menunjukkan tanda-tanda kerusakan.   The issue of fuel leaks in aircraft engines is a critical aspect of ensuring flight safety and operational efficiency. This thesis aims to analyze the causes and impacts of recurring fuel leaks, as well as provide solutions to reduce the frequency and impact of these leaks. The research methodology includes data collection from previous incidents, including pilot reports from ABC Airlines between 2018 and 2020, analyzing the root causes of the issues, and simulating operational conditions. It is hoped that this study will identify patterns and factors contributing to the fuel leak problems. In turn, this will contribute to improving flight safety and minimizing fuel leaks. The research findings identified six aircraft registrations that experienced recurring fuel leaks, one of which had repeated fuel leaks three times. These leaks were caused by various factors, including material wear, installation errors, and the lack of permanent corrective actions. Steps to minimize recurring fuel leaks include more frequent inspections of the fuel system components and replacing components according to manufacturer recommendations or suitable time intervals, even if the components show no signs of damage.
Pendampingan Pengembangan Komponen Instrument Terpadu (KIT) Fisika Terbang untuk SMK Penerbangan Mufti Arifin; Endah Yuniarti; Syarifah Fairuza
JURNAL Comunità Servizio : Jurnal Terkait Kegiatan Pengabdian kepada Masyarakat, terkhusus bidang Teknologi, Kewirausahaan dan Sosial Kemasyarakatan Vol. 6 No. 2 (2024): OKTOBER
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM), Univesitas Kristen Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33541/cs.v6i2.6427

Abstract

The lack of adequate physics laboratory facilities for conducting flight physics practicums in Aviation Vocational High Schools has been a significant obstacle in the learning process. Due to these limitations, students' understanding of the physics concepts underlying aviation principles has been suboptimal. To address this issue, community service activities have focused on enhancing the capacity of teachers at Gutama Aviation Vocational High School to design and implement physics practicums. Through the creation and utilization of Integrated Instrument Kits (KIT) for flight physics, it is hoped that teachers can provide more concrete and engaging learning experiences for students. With the successful development of 5 KITs, teachers now have the skills to design a variety of practical activities that meet the needs of their students. Additionally, the provided mentorship has equipped teachers with a deep understanding of physics concepts relevant to the aviation industry. It is hoped that the success of this activity can improve the quality of physics education at Gutama Aviation Vocational High School, encourage teachers to be more innovative in developing additional KITs, and prepare graduates who are more competent in the field of aviation.
Analysis of The Removal and Installation Stages of The RR Trent 700 Engine on an Airbus A330 Aircraft Using The Critical Path Method Husaini, Fahdli Zulfikar; Mufti Arifin; Muhammad Hadi Widanto
Jurnal Teknologi Kedirgantaraan Vol 10 No 2 (2025): Jurnal Teknologi Kedirgantaraan
Publisher : FTK UNSURYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35894/jtk.v10i2.245

Abstract

The lifting of the Restriction of Community Activities (PPKM) in January 2023 was the beginning of the aviation industry in Indonesia starting to rise marked by the emergence of new Maintenance Repair and Operations (MRO). Limited hangar space at MRO is a challenge in scheduling aircraft maintenance, setting the order of task cards that have been submitted by the airline and must be done in the maintenance project will be an illustration of how long this project will be done. MP item number 7122410504 contains Detailed Inspection of Aft Engine Mount Fail-Safe link is a maintenance job that can be done after the removal of Engine. The engine removal and installation process often takes more time and effort, potentially causing delays in the overall maintenance time. The purpose of this research is to make efficiency in the removal and installation process of the RR Trent 700 engine using the critical path method. The critical path method in analysing the stages of work in the maintenance process aims to identify and optimise resource allocation, so that maintenance time can be minimised and overall efficiency can be improved. The results showed that the application of the critical path method in the stages of engine removal and installation work resulted in a time efficiency of about 1,655 Hours so that the delay in work on the critical path became the main factor affecting the total duration of the engine removal and installation process.