p-Index From 2020 - 2025
14.357
P-Index
This Author published in this journals
All Journal Jurnal Dedikasi Jurnal Ilmu Komputer Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Simantec Jurnal sistem informasi, Teknologi informasi dan komputer Jurnal Teknologi Informasi dan Ilmu Komputer SMATIKA Proceeding of the Electrical Engineering Computer Science and Informatics Fountain of Informatics Journal Sistemasi: Jurnal Sistem Informasi Jurnal Teknologi dan Sistem Komputer JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Informatika Jurnal Pilar Nusa Mandiri Network Engineering Research Operation [NERO] Jurnal Komputer Terapan Syntax Literate: Jurnal Ilmiah Indonesia Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control SINTECH (Science and Information Technology) Journal METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) JURTEKSI EDUMATIC: Jurnal Pendidikan Informatika Jurnal Informatika Kaputama (JIK) JISKa (Jurnal Informatika Sunan Kalijaga) Journal of Electronics, Electromedical Engineering, and Medical Informatics Jurnal Repositor Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Perempuan & Anak Jurnal Dinamika Informatika (JDI) Makara Journal of Technology Jurnal Sistem Informasi Jurnal Informatika: Jurnal Pengembangan IT
Claim Missing Document
Check
Articles

Found 7 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Classification of Diabetic Retinopathy Disease Using Convolutional Neural Network Agus Eko Minarno; Mochammad Hazmi Cokro Mandiri; Yufis Azhar; Fitri Bimantoro; Hanung Adi Nugroho; Zaidah Ibrahim
JOIV : International Journal on Informatics Visualization Vol 6, No 1 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.1.857

Abstract

Diabetic Retinopathy (DR) is a disease that causes visual impairment and blindness in patients with it. Diabetic Retinopathy disease appears characterized by a condition of swelling and leakage in the blood vessels located at the back of the retina of the eye. Early detection through the retinal fundus image of the eye could take time and requires an experienced ophthalmologist. This study proposed a deep learning method, the Efficientnet-b7 model to identify diabetic retinopathy disease automatically. This study applies three preprocessing techniques that could be implemented in the dataset "APTOS 2019 Blindness Detection". In preprocessing technique trial scenarios, Usuyama preprocessing technique obtained the best results with accuracy of 89% of train data and 84% in test data compared to Harikrishnan preprocessing technique which has 82% accuracy in test data, and Ben Graham preprocessing has 81% accuracy in test data. In this study, Hyperparameter tuning was conducted to find the best parameters for use on the EfficientNet-B7 Model. In this study, we tested the Efficientnet-B7 model with an augmentation process that can reduce the occurrence of overfitting compared to models without augmentation. Preprocessing techniques and augmentation techniques can influence the proposed EfficientNet-B7 model in terms of performance results and reduce the overfitting of models.
Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor Agus Eko Minarno; Muhammad Yusril Hasanuddin; Yufis Azhar
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1299

Abstract

Batik is an Indonesian cultural heritage that should be preserved. Over time, many batik motifs have sprung up, which can lead to mutual claims between craftsmen. Therefore, it is necessary to create a system to measure the similarity of a batik motif. This research is focused on making Content-Based Image Retrieval (CBIR) on batik images. The dataset used in this research is big data Batik images. The authors used transfer learning on several pre-trained models and used Convolutional Neural Network (CNN) Autoencoder from previous studies to extract features on all images in the database. The extracted features calculate the Euclidean distance between the query and all images in the database to retrieve images. The image closest to the query will be retrieved according to the number of r, namely 3, 5, 10, or 15. Before the image is retrieved, the retrieval system is used to re-ranked with K-Nearest Neighbor (KNN), which classifies the retrieved image. The results of this study prove that MobileNetV2 + KNN is the best model in terms of Image Retrieval Batik, followed by InceptionV3 and VGG19 as the second and third ranks. Moreover, CNN Autoencoder from previous research and InceptionResNetV2 are ranked fourth and fifth. In this study, it was also found that the use of KNN re-ranking can increase the precision value by 0.00272. For further research, deploying these models, especially for MobileNetV2 is an approach for seeing a major impact on batik craftsmanship for decreasing batik motif plagiarism.
Automatic Summarization of Court Decision Documents over Narcotic Cases Using BERT Galih Wasis Wicaksono; Sheila Fitria Al asqalani; Yufis Azhar; Nur Putri Hidayah; Andreawana Andreawana
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1811

Abstract

Reviewing court decision documents for references in handling similar cases can be time-consuming. From this perspective, we need a system that can allow the summarization of court decision documents to enable adequate information extraction. This study used 50 court decision documents taken from the official website of the Supreme Court of the Republic of Indonesia, with the cases raised being Narcotics and Psychotropics. The court decision document dataset was divided into two types, court decision documents with the identity of the defendant and court decision documents without the defendant's identity. We used BERT specific to the IndoBERT model to summarize the court decision documents. This study uses four types of IndoBert models: IndoBERT-Base-Phase 1, IndoBERT-Lite-Bas-Phase 1, IndoBERT-Large-Phase 1, and IndoBERT-Lite-Large-Phase 1. This study also uses three types of ratios and ROUGE-N in summarizing court decision documents consisting of ratios of 20%, 30%, and 40% ratios, as well as ROUGE1, ROUGE2, and ROUGE3. The results have found that IndoBERT pre-trained model had a better performance in summarizing court decision documents with or without the defendant's identity with a 40% summarizing ratio. The highest ROUGE score produced by IndoBERT was found in the INDOBERT-LITE-BASE PHASE 1 model with a ROUGE value of 1.00 for documents with the defendant's identity and 0.970 for documents without the defendant's identity at a ratio of 40% in R-1. For future research, it is expected to be able to use other types of Bert models such as IndoBERT Phase-2, LegalBert, etc.
Classification of Malaria Cell Image using Inception-V3 Architecture Agus Eko Minarno; Laofin Aripa; Yufis Azhar; Yuda Munarko
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1301

Abstract

Malaria is a severe global public health problem caused by the bite of infected mosquitoes. It can be cured, but only with early detection and effective, quick treatment. It can cause severe conditions if not properly diagnosed and treated at an early stage. In the worst scenario, it can cause death. This study aims at focusing on classifying malaria cell images. Malaria is classified as a dangerous disease caused by the bite of the female Anophles mosquito. As such, it leads to mortality when immediate action and treatment fails to be administered. In particular, this study aims to classify malaria cell images by utilizing the Inception-V3 architecture. In this study, training was conducted on 27,558 malaria cell image data through Inception-V3 architecture by proposing 3 scenarios. The proposed scenario 1 model applies the SGD optimizer to generate a loss value of 0.13 and an accuracy value of 0.95; scenario 2 model applies the Adam optimizer to generate a loss value of 0.09 and an accuracy value of 0.96; and lastly scenario 3 implements the RMSprop optimizer to generate a loss value of 0.08 and an accuracy value of 0.97. Applying the three scenarios, the results of the study apparently indicate that the Inception-V3 model using the RMSprop optimizer is capable of providing the best accuracy results with an accuracy of 97% with the lowest loss value, compared to scenario 1 and scenario 2. Further, the test results confirms that the proposed model in this study is capable of classifying malaria cells effectively.
Performance Comparison of GLCM Features and Preprocessing Effect on Batik Image Retrieval Azhar, Yufis; Akbi, Denar Regata
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2179

Abstract

The use of the Grey-Level Co-occurrence Matrix (GLCM) for feature extraction in image retrieval with complex motifs, such as batik images, has been widely used. Some features often extracted include energy, entropy, correlation, and contrast. Other than these four features, the addition of dissimilarity and homogeneity features to the GLCM method is proposed in this study. Preprocessing methods such as Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) are also used to see whether the two methods can increase the precision value of the retrieval results. This study used the Batik 300 dataset, which consists of 50 classes. Batik was chosen because this type of image has complex patterns and motifs so that it will maximize the role of the GLCM method itself. In addition, Batik is also a world heritage art, so its sustainability needs to be maintained. The test results show that adding dissimilarity and homogeneity features and using the CLAHE method in the preprocessing step can improve model performance. Combining these two methods has produced higher precision values than not using either. Batik, a globally recognized art form, holds the status of a world heritage, necessitating the preservation of its sustainability. Test results have demonstrated that incorporating dissimilarity and homogeneity features, alongside using the CLAHE method during the preprocessing stage, leads to enhanced model performance. The amalgamation of these two methods has yielded precision values that surpass those achieved when either method is used in isolation.
Classification of Skin Cancer Images Using Convolutional Neural Network with ResNet50 Pre-trained Model Minarno, Agus Eko; Lusianti, Aaliyah; Azhar, Yufis; Wibowo, Hardianto
JOIV : International Journal on Informatics Visualization Vol 8, No 4 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.4.2156

Abstract

The skin, an astonishingly expansive organ within the human body, plays a pivotal role in safeguarding us against the environment's harsh elements. It acts as a formidable barrier, shielding our delicate internal systems from the scorching heat of the sun and the harmful effects of relentless exposure to light. Nevertheless, it is not impervious to damage, especially when subjected to excessive sunlight and the potentially hazardous ultraviolet (UV) radiation that accompanies it. Prolonged UV exposure can wreak havoc on our skin cells, potentially setting the stage for the development of skin cancer. This condition demands prompt and accurate diagnosis for effective treatment. To address the pressing need for swift and precise skin cancer diagnosis, cutting-edge technology has come to the fore in the form of deep learning systems. These sophisticated systems have been meticulously designed and trained to classify skin lesions autonomously with remarkable accuracy. The Convolutional Neural Network (CNN) architecture is a formidable choice for handling image classification tasks among the array of deep learning techniques. In a recent breakthrough study, a CNN-based model was meticulously constructed to explicitly classify skin lesions, leveraging the power of a pre-trained ResNet50 architectural model to augment its capabilities. This groundbreaking ResNet50 architecture was meticulously trained to classify seven distinct skin lesions, surpassing the performance of its predecessor, MobileNet. The results achieved in this endeavor are nothing short of impressive. The overall accuracy of the ResNet50 model stands at a commendable 87.42% when tasked with classifying the seven diverse classes within the dataset. Delving further into its proficiency, we find that the Top2 and Top3 accuracy rates soar to an astounding 95.52% and 97.86%, respectively, illustrating the model's exceptional precision and reliability.
Leveraging ESRGAN for High-Quality Retrieval of Low-Resolution Batik Pattern Datasets Azhar, Yufis; Marthasari, Gita Indah; Regata Akbi, Denar; Minarno, Agus Eko; Haqim, Gilang Nuril
JOIV : International Journal on Informatics Visualization Vol 9, No 2 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.2.3202

Abstract

As one of the world's cultural heritages in Indonesia, batik is one of the quite interesting research subjects, including in the realm of image retrieval. One of the inhibiting factors in searching for batik images relevant to the query image input by the user is the low resolution of the batik images in the dataset. This can affect the dataset's quality, which automatically also impacts the model's performance in recognizing batik motifs with complex details and textures. To address this problem, this study proposes using the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) method to increase the resolution of batik images. By increasing the resolution, it is hoped that ESRGAN can clarify the details and textures of the initial low-resolution image so that these features can be extracted better. This study proves that ESRGAN can produce high-resolution batik images while maintaining the details of the batik motif itself. The resulting image's high PSNR and low MSE values confirm this. The implementation of ESRGAN has also been proven to improve the performance of the image retrieval system with an increase in precision and average precision values between 1-5% compared to other methods that do not implement it.
Co-Authors A.A. Ketut Agung Cahyawan W Achmad Fauzi Saksenata Achmad Yusuf Adhigana Priyatama Aditya Dwi Maryanto Adnan Burhan Hidayat Kiat Afdian, Riz Agus Eko Minarno Agus Zainal Arifin Ahmad Annas Al Hakim Ahmad Darman Huri Ahmad Hanif Nurfauzi Ahmadu Kajukaro Akbi, Denar Regata Akmal Muhammad Naim Al-rizki, Muhammad Andi Alfin Yusriansyah Ali Sofyan Kholimi Amelia, Putri Juli Ananda Ayu Dianti Andhika Ade Verdiyanto Andhika Pranadipa Andi Shafira Dyah Kurniasari Andreawana Andreawana Andriani Eka Pramudita Annisa Annisa Annisa Fitria Nurjannah Aria Maulana Aris Muhandisin Arya, Tri Fidrian Audi Bayu Yuliawan Aulia Ligar Salma Hanani Bagas Aji Aprian Basuki, Setio Bayu Yuliawan, Audi Bintang, Rahina Chandranegara, Didih Rizki Chita Nauly Harahap Christian Sri Kusuma Aditya Christian Sri kusuma Aditya, Christian Sri kusuma Denny Risky Delis Putra Dewi Agfiannisa Diana Purwitasari Diana Purwitasari Doni Yulianto Dwi Anggraini Puspita Rahayu Dwi Kurnia Puspitaningrum DWI RAHMAWATI Dyah Anitia Dyah Ayu Irianti Eko Budi Cahyono Elfrida Ratnawati Elsyah Ayuningrum Elza Norazizah Evi Febrion Rahayuningtyas Fahrur Rozi Faizun Nuril Hikmah Faldo Fajri Afrinanto Fatimah Defina Setiti Alhamdani Fenny Linsisca Putri Feny Novia Rahayu Feranandah Firdausi Ferin Reviantika Ferin Reviantika Fikri, Ulul Fiqri Azmi Fachir Firdausi, Feranandah Firdausita, Nuris Sabila Firdausy, Aidia Khoiriyah Firdhansyah Abubekar Fitri Bimantoro Galang Aji Mahesa Galang Aji Mahesa Gita Indah Marthasari Haqim, Gilang Nuril Hardianto Wibowo Haris Diyaul Fata Harmanto, Dani Hermansyah Adi Saputra Hiu Adam Abdullah Hussin Agung Wijaya Ibrahim, Zaidah Ilham Rahmana Syihad Imam Halimi Irfan, Muhammad Ivan Dwi Nugraha Jahtra Hidayatullah Jalu Nusantoro Khoirir Rosikin Kiki Ratna Sari Laofin Aripa Lina Dwi Yulianti Linggar Bagas Saputro Lusianti, Aaliyah M Syawaluddin Putra Jaya M. Randy Anugerah Mahar Faiqurahman Maskur Maskur Maskur Maskur Masluha, Ida Maulina Balqis Meilina Agustina Mentari Mas'ama Safitri Moch Shandy Tsalasa Putra Moch. Chamdani Mustaqim Mochammad Hazmi Cokro Mandiri Mochammad Hazmi Cokro Mandiri Moh. Badris Sholeh Rahmatullah Muhammad Aji Purnama Wibowo Muhammad Al Reza Fahlopy Muhammad Andi Al-Rizki Muhammad Athaillah Muhammad Bima Al Fayyadl Muhammad Fadliansyah Muhammad Hussein Muhammad Misbahul Azis Muhammad Nuchfi Fadlurrahman Muhammad Riadi Muhammad Rifal Alfarizy Muhammad Rivaldi Asyhari Muhammad Rizal Muhammad Rizki Muhammad Rizky Iman Permana Muhammad Shalahuddin Zulva Muhammad Yusril Hasanuddin Mujaddid Izzul Fikri Nabillah Annisa Rahmayanti Nina Mauliana Noor Fajriah Novandha Yudyanto Noviani Sintia Duwi Trisna Nur Hayatin Nur Putri Hidayah Nuryasin, Ilyas Oktavia Dwi Megawati Otto Endarto Prakoso, Rahmat Putri, Ira Ekanda Rahma Ningsih Rangga Kurnia Putra Wiratama Ratna Sari Rifky Ahmad Saputra Riksa Adenia Riska Septiana Putri Rista Azizah Arilya Riz Afdian Rizal Arya Suseno Rizal Rakhman Mustafa Rozi, Fahrur S, Vinna Rahmayanti Saputri, Indah Sari Wahyunita Sari, Veronica Retno Sari, Zamah Satrio Hadi Wijoyo Satrio Hadi Wijoyo Septiyan Andika Isanta Setiono, Fauzan Adrivano Sheila Fitria Al asqalani Shintya Larasabi , Auliya Tara Silcillya Ayu Astiti Siti Maghfiroh Sucia, Dara Suryani Rachmawati Suseno, Jody Ririt Krido Susi Ekawati Syaifuddin Syaifuddin Syaifudin Zuhri Taufik Nurahman Tri Fidrian Arya Trifebi Shina Sabrila Trifebi Shina Sabrila ubay hakim arrafiq Ujilast, Novia Adelia Ulfah Nur Oktaviana Veronica Retno Sari Vinna Utami Putri Wahyu Priyo Wicaksono Wana Salam Labibah Wicaksono, Galih Wasis Widya Rizka Ulul Fadilah Wildan Suharso Wildan Suharso Wildan Suharso Yesicha Amilia Putri Yuda Munarko Yudhono Witanto Yurizal Rizqon Rifani Zaidah Ibrahim Zamah Sari