p-Index From 2021 - 2026
7.022
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Edutech Semantik Techno.Com: Jurnal Teknologi Informasi Bulletin of Electrical Engineering and Informatics JSI: Jurnal Sistem Informasi (E-Journal) Jurnal Ilmiah Kursor Jurnal Transformatika International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Tech-E Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control CogITo Smart Journal JOURNAL OF APPLIED INFORMATICS AND COMPUTING International Journal of New Media Technology MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Data Science: Journal of Computing and Applied Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Building of Informatics, Technology and Science Indonesian Journal of Electrical Engineering and Computer Science International Journal of Advances in Data and Information Systems Abdimasku : Jurnal Pengabdian Masyarakat Jurnal Teknik Informatika (JUTIF) Journal of Applied Data Sciences JOURNAL SCIENTIFIC OF MANDALIKA (JSM) Jurnal Pendidikan dan Teknologi Indonesia Jurnal Teknologi Informasi Cyberku Studies in English Language and Education Moneter : Jurnal Keuangan dan Perbankan Scientific Journal of Informatics Journal on Pustaka Cendekia Informatika
Claim Missing Document
Check
Articles

Remove Blur Image Using Bi-Directional Akamatsu Transform and Discrete Wavelet Transform Andono, Pulung Nurtantio; Sari, Christy Atika
Scientific Journal of Informatics Vol 9, No 2 (2022): November 2022
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v9i2.34173

Abstract

Purpose: Image is an imitation of everything that can be materialized, and digital images are taken using a machine. Although digital image capture uses machines, digital images are not free from interference. Image restoration is needed to restore the quality of the damaged image.Methods: Bi-directional Akamatsu Transform is proven to have an effective performance in reducing blur in images. Meanwhile, Discrete Wavelet Transform has been widely used in digital image processing research. We had been investigated the image restoration method by combining Bi-directional Akamatsu Transform and Discrete Wavelet Transform. Bi-directional Akamatsu Transform applied in Low-Low (LL) sub-band is the Discrete Wavelet Transform decomposition image most similar to the original image before decomposing. In this study, there are still shortcomings, including the determination of the values of N, up_enh, and down_enh, which are still manual. Manually setting the three values makes the Bi-directional Akamatsu Transform method not get the best results. With the use of machine learning methods can get better restoration results. Further testing is also needed for a more diverse and robust blur. The image data has a resolution of 256x256, 512x512, and 1024x1024. The image will be directly converted to a grey-scale image. The converted image will be given an attack model: average blur, gaussian blur, and motion blur. The image that has been attacked will apply two restoration methods: the proposed method and the Bi-direction Akatamatsu Transform. These two restoration images will then be compared using PSNR.Result: The average PSNR value from the restoration of the proposed method is 0.1446 higher than the average PSNR value from the restoration of the Bi-directional Akamatsu Transform method. When we compare it with the average PSNR value of the Akamatsu Transform restoration method, the average PSNR of the proposed method is 0.2084.Value: The combination of DWT and akamatsu transform results produce good PSNR values even though they have gone through the blurring method in image restoration.
Optimization of the Preprocessing Method for Edge Detection on Overlapping Cells at PAP Smear Images Nita Merlina; Edi Noersasongko; Pulung Nurtantio Andono; M Arief Soeleman; Dwiza Riana
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1329

Abstract

The complexity of the cell structure and high overlap cause poor image contrast. Complex imaging factors can make automatic visual interpretation more difficult. Segmentation separates a digital image into different parts with homogeneous attributes so that different areas have different features. The challenges faced in performing nucleus segmentation on Pap Smear (PS) images are poor contrast, the presence of neutrophils, and uneven staining of overlapping cells. This research was conducted to improve image quality in identifying the nucleus accurately. The method used is the Polynomial Contrast Enhancement (PCE) model as an approach to preprocessing. This method functions to change the contrast of the Pap smear image against the overlapping cells so that it becomes a significant contrast in detecting the edge of the nucleus object. The detection process uses the Robert and Prewitt edge detection method to test the identification of the nucleus object on 797 PS Repository images of the University of Nusa Mandiri (RepomedUNM). The accuracy result obtained is 86.8%. Comparing Robert's edge detection and Prewitt's edge detection shows that the PCE approach as a filter method can overcome color contrast problems and detect more accurately. The difficulty in detecting the nucleus from the PS image against the overlapping cells can be solved. This method can distinguish overlapping cells from their core during testing, thus becoming a reference in identifying cells with improved accuracy and testing larger data sets.
CONTENT BASED IMAGE RETRIEVAL BERBASIS COLOR HISTOGRAM UNTUK PENGKLASIFIKASIAN IKAN KOI JENIS KOHAKU Hisyam Syarif; Pulung Nurtantio Andono
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 8, No 2 (2023)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v8i2.3612

Abstract

Dalam beberapa tahun terakhir pengumpulan dan pengolahan data berbentuk citra berkembang sangat pesat. Data berbentuk citra dalam jumlah besar digunakan pada berbagai bidang, salah satunya di bidang perikanan, terutama untuk penentuan atau pengklasifikasian jenis ikan koi. Namun beberapa penggemar koi tidak mengetahui jenis koi apa yang dimiliki nya, hanya tertarik dari ukuran dan warna nya yang unik dan beragam. Jenis koi dapat dibedakan dari corak warna ditubuhnya, Masalah pengenalan warna dalam koi dapat diselesaikan dengan menerapkan metode Content Based Image Retrieval berbasis Color Histogram dengan Euclidean Distance dan Mean Square Error. Dengan menerapkan metode ini, penentuan jenis ikan koi berdasarkan corak warna pada tubuh koi dapat diselesaikan. CBIR merupakan suatu aplikasi computer vision dengan teknik pencarian gambar yang diambil dari basis data yang menyediakan gambar. Ber-dasarkan hasil pengujian yang dilakukan pada 15 jenis Koi yang berbeda dengan menggunakan Euclidean Distance, didapatkan 3 jenis Koi yang mirip dengan citra acuan yaitu Kohaku1, Kohaku2 dan Kohaku3 dengan nilai threshold an-tara 0 – 70000000 yang menandakan jika citra tersebut sejenis. Dan untuk mendapatkan tingkat akurasi error nya digunakan teknik Mean Square Error dengan hasil threshold antara 0 – 213.000, yang menandakan jika citra tersebut sejenis. Dari hasil Mean Square Error didapatkan validasi hasil sebesar 330.931pixel untuk ketepatan pemilihan gambar.
Metode Naive Bayes Classifier dan Forward Selection Untuk Deteksi Berita Hoaks Bahasa Indonesia Danang Bagus Chandra Prasetiyo; Pulung Nurtantio Andono; Catur Supriyanto
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 3 (2023): Juli 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i3.6459

Abstract

Presently, hoaxes or fake news have become a serious threat to human life. Hoax news can not only cause material harm and chaos in society, but now fake news can also affect a person's psychology by causing fear and terror, and at worst, it can break national sovereignty. To process the classification, data miming is used so that it can be seen whether a news item is hoax or genuine news. In this study, researchers used naïve Bayes as a classification method. Then the researcher also uses the forward selection function used in the Naïve-Bayes method. Forward selection is the best regression model formation method based on an approach by selecting variables by including the independent variables that have the largest correlation values. While the naïve Bayes algorithm works conditionally independent between predictions. Based on the tests that have been carried out on the classification of Indonesian hoaxes using Naïve Bayes and Forward Selection to obtain an accuracy of 84%, and a recall of 63.72% while the precision increases to 91.19% with an increase in accuracy of 8.8% and a recall of 8.19% and precision increased by 20.98%. It is hoped that the level of accuracy in the classification of Indonesian hoax news using the naïve Bayes method using forward selection can be increased.
LSB-2 Steganography with Brotli Compression and base64 Encoding for Improving Data Embedding Capacity Satriyawibawa, Muhammad Yiko; Andono, Pulung Nurtantio; Soong, Lim Way; Kiat, Ng Poh
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.13264

Abstract

Steganography functions as a technique for embedding messages or data in various forms of media, such as images, audio, video, or text, with the aim of avoiding detection by unauthorized parties. Steganography techniques can be used as a solution to hide and protect data. In this research, steganography will be carried out using images as the transmission object. This research was conducted to offer a modification of the Least Significant Bit (LSB) steganography technique using the LSB-2 method with Brotli compression and base64 encoding. Modification and use of Brotli compression and base64 coding aims to increase the message capacity that can be embedded in a transmission object while maintaining the quality of the transmission object. Experiments using small data and big data. The experimental results will be presented in tabular form by comparing the original image with the steganographically processed image using metrics such as Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM) as a comparison. The experiments carried out resulted in an increase in image capacity by reducing capacity usage with an average of 47.13% for small data and an average of 71.34%. The big data experiment resulted in an increase in the PSNR value of around 3.49%, accompanied by a decrease in the average MSE value of 33.85%, and a constant SSIM value of 0.9999, thus proving that the proposed method was successful in increasing image capacity and improving stego-image quality. when embedding big data.
Deep learning for audio signal-based tempo classification scenarios Muljono, Muljono; Nurtantio Andono, Pulung; Ayu Wulandari, Sari; Al Azies, Harun; Naufal, Muhammad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i2.pp1687-1701

Abstract

This article explains how to determine the tempo of the kendhang, an Indonesian traditional melodic instrument. This research presents novelty as technological research related to gamelan instruments, which has rarely been achieved thus far, through the introduction of kendhang tempo types through the sounds produced, with the hope of creating an automatic system that can recognize the kendhang tempo during a gamelan performance. The testing in this work will categorize the tempo of kendhang into three categories: slow, medium, and fast, utilizing one of the two scenario models proposed, mel frequency cepstral coefficients (MFCC) and convolutional neural network (CNN) in the first scenario, and mel spectrogram and CNN in the second. Kendhang's original audio data, which was captured in real time and later enhanced, makes up the data set. The model 1 scenario, which entails feature extraction using MFCC and classification using the CNN classification approach, is the best scenario in this research, based on the experimental results. When compared to the other suggested modeling scenarios, model 1 has a level of 97%, an average accuracy, and a gain value of 96.67%, making it a solid assistant in terms of kendhang's good tempo recognition accuracy.
Optimization of Yolov5 Hyperparameter Using Adam Optimizer in Vehicle Object Detection Irawan, Bambang; Andono, Pulung Nurtantio; Basuki, Ruri Suko
(JAIS) Journal of Applied Intelligent System Vol. 9 No. 1 (2024): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v9i1.9244

Abstract

Utilization of computer vision can be applied in various aspects of daily life, reducing dependence on human labor. One of its implementations is in industry, such as in the production process of motorized vehicles, to sort or classify parts or goods. The computer vision process involves many stages, such as image capture, image processing, image analysis, image recognition, and decision-making. In the automotive industry, computer vision has been used in autonomous or driverless electric vehicles, as well as in creating intelligent transportation systems. To detect objects in real-time, one of the options that can be used is to use the YOLO algorithm, which can detect objects in one stage with predictions of bounding boxes and class probabilities simultaneously. However, although YOLO has good performance, the architecture has some drawbacks, such as complexity and complicated hyperparameter congurations. To remedy this, the Adam optimization algorithm was introduced, which combines the momentum and RMSprop algorithms to adjust the learning rate adaptively and provide faster convergence in model training. This is evidenced by an increase in the value of mAP on Yolov5. These results prove that the Yolov5 method with Adam`s optimization is better than the Yolov5 method without optimization.
Win Probability of Heroes in Mobile Legends MPL ID S12 Competitions Using Nave Bayes Algorithm Putra, Angga Permana; Andono, Pulung Nurtantio
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 1 (2024): Januari 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i1.7185

Abstract

The development of the gaming industry into digital formats has become a rapidly growing trend. E-Sports, particularly in Indonesia, has shown significant growth alongside technological advancements. The increased interest in E-Sports is evidenced by the higher quality tournaments organized by local game developers, such as Moonton, a subsidiary of ByteDance, hosting tournaments for Mobile Legends: Bang Bang. This article aims to analyze the probability of winning heroes in the Mobile Legends Professional League Season 12 using the Naive Bayes algorithm. The results of calculating the probabilities for various hero roles show varying levels of winning potential. By utilizing this method, it becomes possible to predict hero victories or losses more systematically, aiding players in developing more effective strategies during matches. The results obtained from predicting hero victories and losses indicate that for the jungler role, the win rate is 0.145 and the loss rate is 0.088. For midlaners, the victory rate reaches 0.492 and 0.661 for losses. As for roamers, the win rate is 0.120 and the loss rate is 0.102. For goldlaners and explaners, they achieve win rates of 0.528 and 0.177, respectively, while their loss rates are 0.339 and 0.132. Furthermore, after testing the data, the accuracy obtained for the roles is as follows: jungler role 67.61%, midlaner role 67.5%, roamer 67.65%, goldlaner 67.29%, and explaner 67.71%.
IMRAD, synthesis, and hedging within expert academic writing to encourage a world discussion platform Jumanto, Jumanto; Waluyo, Dwi Eko; Purwatiningsih, Aris Puji; Andono, Pulung Nurtantio; Nugroho, Raden Arief; Ramayanti, Ismarita; Minghat, Asnul Dahar Bin
Studies in English Language and Education Vol 11, No 3 (2024)
Publisher : Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24815/siele.v11i3.34776

Abstract

This paper examines IMRAD, synthesis, and hedging within expert academic writing to encourage a world discussion platform and to enhance manuscript writing for internationally reputable journals. The research utilized 25 Quartile-1 Scopus-indexed articles from 25 scholarly journals from 2022 and 2023 publications across different subject areas. Through online searching, observation, and interpretive techniques, the patterns of IMRAD, its synthesis, and the use of hedging within the synthesis were analyzed and identified as crucial elements for creating a manuscript that serves as a world discussion platform. Based on the systematic observation and interpretation of the 25 data sources, the research findings were discussed across three aspects: the IMRAD pattern, synthesis, and hedging. The findings revealed that symmetrical IMRAD patterns were rarely employed by authors of Quartile-1 Scopus-indexed journals, with various patterns being applied and the largest proportion focusing on different aspects. Synthesis was utilized by all authors of the 25 journal articles, and hedging or cautious language was used by most authors. Authors worldwide may benefit from the results of this research when writing manuscripts to be submitted to internationally reputable journals. Additionally, academic writing teachers can use the proposed interpretive model and research results to teach expert academic writing to their students, thus enhancing the quality of student academic writing and enabling the publication of their papers in internationally reputable journals.
Penerapan Algoritma Random Forest dalam Prediksi Curah Hujan untuk Mendukung Analisis Cuaca Torhino, Rizal; Andono, Pulung Nurtantio
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6404

Abstract

Indonesia's climate diversity leads to different rainfall patterns in each region. This condition presents a major challenge in the effort to produce accurate rainfall predictions, which are important to support effective infrastructure planning and disaster mitigation. The purpose of this research is to analyze the rainfall potential in Purwodadi Sub-district using Random Forest algorithm. In this analysis, several weather parameters such as air pressure, temperature, humidity, and wind speed are used, while rainfall becomes the target variable in the prediction process. The dataset used in this study was obtained from NASA Prediction Of Worldwide Energy Resources (POWER) with a time period between 2000 and 2022. The data is then divided into 70% for training data and 30% for test data. In this study, the Random Forest algorithm was used to classify the likelihood of rain based on existing weather conditions. The implementation results showed that the Random Forest model achieved 100% accuracy on the training data and 92% on the test data, indicating excellent prediction performance. Results from the confusion matrix confirmed that the majority of the model predictions matched the actual data. This finding shows that the weather parameters used are effective in predicting rainfall in Purwodadi sub-district. This research contributes to improving the accuracy of rainfall prediction and opens up opportunities for the development of better weather prediction models, involving more parameters or using other algorithms for more in-depth performance evaluation.
Co-Authors Abdussalam Abdussalam, Abdussalam Achmad Ridwan Affandy Agus Winarno, Agus Al zami, Farrikh Al-Fatih, Gilang Fajar Alzami, Farrikh Anshori, Muhammad Izzul Aria Hendrawan, Aria Arry Maulana Syarif, Arry Maulana Asih Rohmani Asih Rohmani, Asih Bastiaans, Jessica Carmelita Budi Harjo Cahaya Jatmoko Candhy Fadhila Arsyad Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto Chaerul Umam Christy Atika Sari D, Ishak Bintang Dalimarta, Fahmy Ferdian Danang Bagus Chandra Prasetiyo Darmawan, Aditya Aqil Denny Senata Dito, Aliffia Putri Doheir, Mohamed Dwi Eko Waluyo Dwi Puji Prabowo, Dwi Puji Dwiza Riana Edi Noersasongko Edi Noersasongko Edi Noersasongko Egia Rosi Subhiyakto, Egia Rosi Ekaprana Wijaya Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Erna Zuni Astuti Fajrian Nur Adnan Fauzi Adi Rafrastara Firman Wahyudi, Firman Fitri Yakub Guruh Fajar Shidik Hamir, Mun Hanny Haryanto Hartojo, James Harun Al Azies Heru Lestiawan Hidayat, Sholeh Hisyam Syarif Husain Husain I Ketut Eddy Purnama Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Irwan, Rhedy Islam, Hussain Md Mehedul Ivan Maulana Jumanto Jumanto, Jumanto Junta Zeniarja Karis Widyatmoko Khafiizh Hastuti Kiat, Ng Poh Kunio Kondo L. Budi Handoko M Arief Soeleman M. Arief Soeleman M. Arif Soeleman Maria Goretti Catur Yuantari Megantara, Rama Aria Mila Sartika, Mila Minghat, Asnul Dahar Bin Moch Arief Soeleman Moch Arief Soeleman Moch Arief Soeleman, Moch Arief Mochamad Hariadi Mochammad Arief Soeleman Muhammad Munsarif Muhammad Naufal, Muhammad Muljono Muljono Nanna Suryana Herman Ningrum, Novita Kurnia Nita Merlina Noor Ageng Setiyanto, Noor Ageng Nur Azise Ocky Saputra, Filmada Panca Hutama Caniago Paramita, Cinantya Pergiwati, Dewi Pramitasari, Ratih Prasetyoningrum, Devi Puji Purwatiningsih, Aris Pujiono Pujiono Purwanto Purwanto Putra, Angga Permana Raden Arief Nugroho Rafsanjani, Muhammad Ivan Rahmatullah, Muhammad Rifqi Fadhlan Ramadhan Rakhmat Sani ramayanti, ismarita Ricardus Anggi P Ricardus Anggi Pramunendar Rohman, Muhammad Syaifur Ruri Suko Basuki Saputra, Filmada Ocky Saputri, Pungky Nabella Saputro, Wicaksono Agung Saraswati, Galuh Wilujeng Sari Ayu Wulandari Sarker, Md. Kamruzzaman Satriyawibawa, Muhammad Yiko Savicevic, Anamarija Jurcev Senata, Denny Sendi Novianto Shafa, Raihanaldy Ash Shier Nee Saw Sinaga, Daurat Sindhu Rakasiwi Siti Hadiati Nugraini Soeleman, Arief Soeleman, M Arief Soeleman, M. Arief Soeleman, Moch. Arief Soong, Lim Way Sri Winarno Sri Winarno Steven, Alvin Sudibyo, Usman Sukmawati Anggraeni Putri, Sukmawati Anggraeni Sukmono, Indriyo K. Supriyono Asfawi Susanto Susanto Tendi Tri Wiyanto, Tendi Tri Tengku Riza Zarzani N Thifaal, Nisrina Salwa Torhino, Rizal Wellia Shinta Sari Yaacob, Noorayisahbe Mohd Yusianto Rindra Zahrotul Umami, Zahrotul Zainal Arifin Hasibuan