p-Index From 2021 - 2026
12.649
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) JURNAL SISTEM INFORMASI BISNIS Proceedings of KNASTIK Techno.Com: Jurnal Teknologi Informasi TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Jurnal Informatika SPEKTRUM INDUSTRI Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Teknik Elektro Bulletin of Electrical Engineering and Informatics Jurnal Teknologi Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Scientific Journal of Informatics Seminar Nasional Informatika (SEMNASIF) Jurnas Nasional Teknologi dan Sistem Informasi JURNAL PENGABDIAN KEPADA MASYARAKAT Jurnal Teknologi Elektro INFORMAL: Informatics Journal Proceeding SENDI_U Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Bulletin of Electrical Engineering and Informatics JOIN (Jurnal Online Informatika) Edu Komputika Journal Jurnal Teknologi dan Sistem Komputer JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Jurnal Informatika Jurnal Khatulistiwa Informatika Journal of Information Technology and Computer Science (JOINTECS) Jurnal Ilmiah FIFO INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi AKSIOLOGIYA : Jurnal Pengabdian Kepada Masyarakat JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control CogITo Smart Journal IT JOURNAL RESEARCH AND DEVELOPMENT InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika JURNAL REKAYASA TEKNOLOGI INFORMASI PROCESSOR Jurnal Ilmiah Sistem Informasi, Teknologi Informasi dan Sistem Komputer Applied Information System and Management ILKOM Jurnal Ilmiah Compiler MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) JUMANJI (Jurnal Masyarakat Informatika Unjani) JURTEKSI RESISTOR (Elektronika Kendali Telekomunikasi Tenaga Listrik Komputer) Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika Informatika : Jurnal Informatika, Manajemen dan Komputer Jurnal Ilmiah Mandala Education (JIME) Systemic: Information System and Informatics Journal EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jurnal Mantik Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi JISKa (Jurnal Informatika Sunan Kalijaga) Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Journal of Robotics and Control (JRC) Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Cyber Security dan Forensik Digital (CSFD) JTIULM (Jurnal Teknologi Informasi Universitas Lambung Mangkurat) International Journal of Advances in Data and Information Systems Edunesia : jurnal Ilmiah Pendidikan Journal of Innovation Information Technology and Application (JINITA) Infotech: Journal of Technology Information Jurnal Teknologi Informatika dan Komputer Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal Teknik Informatika (JUTIF) JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) Humanism : Jurnal Pengabdian Masyarakat International Journal of Robotics and Control Systems J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Informatika Teknologi dan Sains (Jinteks) Techno Jurnal Pengabdian Informatika (JUPITA) Jurnal INFOTEL Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics Jurnal Karya untuk Masyarakat (JKuM) Control Systems and Optimization Letters Signal and Image Processing Letters Scientific Journal of Engineering Research SEMINAR TEKNOLOGI MAJALENGKA (STIMA) Edumaspul: Jurnal Pendidikan Methods in Science and Technology Studies
Claim Missing Document
Check
Articles

MoLLe: A Hybrid Model for Classifying Diseases in Chili Plants Using Leaf Images Khoirunnisa, Itsnaini Irvina; Fadlil, Abdul; Yuliansyah, Herman
Scientific Journal of Informatics Vol. 12 No. 3: August 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i3.29071

Abstract

Purpose: Leaf diseases are often early indicators of problems in plants. More detailed image information with feature extraction on leaves can improve accuracy. However, MobileNetV2 tends to be less than optimal in capturing the fine texture characteristics of leaves. This research aims to propose a classification model for diseases in chili plants based on leaf images using MobileNetV2 with Local Binary Pattern (LBP), with three fully connected layers (220-120-60 neurons) using the ReLU activation function, referred to as MoLLe. Methods: This research consists of six stages. It begins with a dataset collected from chili farms comprising 900 images, which are then preprocessed into 3,600 images. Next, LBP feature extraction is performed. After that, a comparison between the benchmark architecture and the proposed architecture is conducted. A softmax layer is used to perform three-class classification. The MoLLe model was tested with the MobileNetV2 and MobileNetV2+LBP benchmark architectures and evaluated using a confusion matrix. Result: Based on the evaluation conducted, using batch size 32, learning rate 0.001, and 20 epochs, the MoLLe model experienced early stopping at epoch 11, achieving an accuracy of 0.97 training data, 0.84 validation data, and 0.91 testing data. The evaluation results showed consistent precision, recall, and F1-score values of 0.91, indicating the model's balanced ability to identify the three disease classes. Novelty: The novelty of this research lies in the integration of MobileNetV2 and LBP with modifications to three fully connected layers, which not only reduces the number of training parameters but also accelerates the detection process. This research makes an essential contribution to the development of more efficient and effective plant disease detection systems, with experimental results showing that MoLLe outperforms the benchmark architecture.
Pengenalan Dan Pelatihan UI/UX Serta Jenjang Karir Di Masa Depan untuk Siswa Siswi SMK Informatika Wonosobo Fadlil, Abdul; Murinto; Firdaus, Asno Azzawagama; Rifaldi, Dianda
Humanism : Jurnal Pengabdian Masyarakat Vol 4 No 3 (2023): Desember
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/hm.v4i3.20285

Abstract

Artikel ini menyajikan kegiatan pengabdian yang dilaksanakan pada 12 Juni 2023 di SMK Informatika Wonosobo, Jawa Tengah. Kegiatan tersebut difokuskan pada pengenalan desain UI/UX dan pelatihan terkait desain UI/UX untuk membantu siswa mempersiapkan karir di bidang tersebut di masa depan. Sebanyak 20 orang siswa ikut serta dalam kegiatan ini yang didampingi oleh pihak sekolah. Peserta menunjukkan antusiasme yang tinggi selama kegiatan berlangsung. Kegiatan berupa sosialisasi dan tanya jawab hingga praktik langsung ini memang baru kali pertama diselenggarakan pada SMK Informatika Wonosobo tersebut sehingga siswa belum memiliki pemahaman mengenai desain UI/UX. Hal tersebut terlihat dari peningkatan skor akhir yang signifikan dalam evaluasi pra dan pasca pembekalan menggunakan pre test dan post test dengan metode perhitungan likert. Skor akhir meningkat dari 44,2% pada pre test menjadi 93,6% pada post test. Hasil ini menunjukkan bahwa kegiatan pengabdian ini berhasil meningkatkan pemahaman dan pengetahuan peserta dalam bidang desain UI/UX. Pihak sekolah mengharapkan kegiatan serupa dapat tetap dilaksanakan di SMK Informatika Wonosobo guna meningkatkan pengetahuan dan pemahaman siswa mengenai dunia kerja.
Performance Comparison of Learned Features from Autoencoder and Shape-Based Hu Moments for Batik Classification Dzulqarnain, Muhammad Faqih; Fadlil, Abdul; Riadi, Imam
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.4827

Abstract

Batik classification depends critically on effective feature extraction to capture the unique geometric and visual characteristics of batik patterns. This study compares two distinct feature extraction methods for batik classification: learned features extracted via a convolutional autoencoder, and shape-based handcrafted features derived from Hu Moments. While autoencoders automatically learn complex latent representations that adapt to intricate pattern variations, Hu Moments provide invariant shape descriptors robust to rotation, scaling, and translation. The methodology involves extracting Hu Moment features and autoencoder latent features from the same batik image dataset, followed by evaluation with identical classifiers to ensure a fair comparison. Experimental results reveal key trade-offs: Hu Moments offer robustness and interpretability in capturing shape geometry, whereas autoencoder features better model complex, non-linear patterns. These findings highlight the complementary strengths of classical and learned feature extraction techniques, offering valuable insights for optimizing batik classification. This research advances feature extraction methodologies in cultural heritage image analysis, with broader applicability to pattern-rich domains like batik classification.
Evaluating The Effectiveness of Augmentation and Classifier Algorithms for Fraud Detection: Comparing CGAN and SMOTE with Random Forest and XGBoost Sarmini, Sarmini; Sunardi, Sunardi; Fadlil, Abdul
Applied Information System and Management (AISM) Vol. 8 No. 2 (2025): Applied Information System and Management (AISM)
Publisher : Depart. of Information Systems, FST, UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/aism.v8i2.46308

Abstract

Fraud detection in imbalanced datasets, where fraudulent transactions represent a small fraction of total data, presents a major challenge for machine learning models. Traditional classifiers often perform poorly in such scenarios due to their bias toward the majority class. This study investigates the effectiveness of two data augmentation techniques, Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Generative Adversarial Networks (CGAN) in improving fraud detection performance. Both methods are applied to balance the dataset, and their impact is evaluated using two classifiers: Random Forest (RF) and XGBoost. The models are tested across three versions of the dataset: the original imbalanced data, the SMOTE-augmented data, and the CGAN-augmented data. Evaluation metrics include accuracy, precision, recall, F1 score, and ROC-AUC. Results indicate that both augmentation techniques enhance the models' ability to detect fraudulent transactions compared to the original dataset. Notably, CGAN outperforms SMOTE in terms of recall and F1 score, suggesting its ability to generate more diverse and realistic synthetic samples. While SMOTE creates new samples through interpolation, CGAN uses an adversarial process involving a generator and a discriminator, resulting in more complex data representations. The study also finds that XGBoost combined with CGAN yields the highest performance, effectively capturing intricate fraud patterns. In contrast, SMOTE, though beneficial, shows limited capacity in improving recall. This research highlights the importance of advanced augmentation techniques like CGAN in addressing class imbalance and improving fraud detection systems. It also opens pathways for future exploration of deep learning-based augmentation and classification methods in fraud detection.
Comparison of Machine Learning Algorithms for Stunting Classification Yunus, Muhajir; Biddinika, Muhammad Kunta; Fadlil, Abdul
Scientific Journal of Engineering Research Vol. 1 No. 2 (2025): April
Publisher : PT. Teknologi Futuristik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.64539/sjer.v1i2.2025.9

Abstract

Indonesia is one of the countries with medium stunting data over the past decade, around 21.6%. Stunting prevention is a national program in Indonesia, and stunting reduction in children is the first of the six goals in the Global Nutrition Target for 2025. Based on SSGI data in 2022, the prevalence of stunting in Gorontalo Province is 23.8% and is in the high category. Stunting prevention is an early effort to improve the ability and quality of human resources. This study compared two Machine Learning algorithms for stunting classification in children, namely the Naive Bayes method and Decision Tree C4.5 using Python by dividing the training and testing data a total ratio of 80:20. The performance of each algorithm was evaluated using a dataset of child health information based on z-score calculation data with a total of 224 records, consisting of 4 attributes and 1 label, namely gender, age, weight, height and nutritional status. The results of the research that have been conducted show that the Decision Tree C4.5 algorithm achieves the highest accuracy in the classification of stunting events with an accuracy of 87% while for the Naïve Bayes algorithm produces a low accuracy of 71% so that for this study the Decision tree C4.5 algorithm is the best algorithm for the classification of stunting events. These findings suggest this algorithm can be a valuable tool for classifying children's stunting.
Air Quality Index Classification: Feature Selection for Improved Accuracy with Multinomial Logistic Regression Irjayana, Rizky Caesar; Fadlil, Abdul; Umar, Rusydi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.5155

Abstract

Air pollution is a major public health concern, creating the need for accurate and interpretable Air Quality Index (AQI) classification models. This study aims to classify AQI into three categories—Good, Moderate, and Unhealthy—using Multinomial Logistic Regression (MLR) with feature selection. The dataset, obtained from public monitoring stations in Jakarta between 2021 and 2024, initially contained 4,620 daily records. After cleaning and outlier removal, 3,586 valid samples remained, from which 900 balanced records (300 per class) were selected for modeling. Key features included PM₁₀, PM₂.₅, SO₂, CO, O₃, and NO₂, which were standardized using Max Normalization to ensure uniform feature scaling. The classification process applied k-fold cross-validation (k = 2–5), and performance was assessed using accuracy and Macro F1-score. Results show that including PM₂.₅ improves performance by about 10%, with the best outcome at k = 5 (accuracy = 91.67%, Macro F1 = 91.45%). These findings confirm PM₂.₅ as a decisive feature for AQI prediction and demonstrate that MLR provides a lightweight, transparent, and computationally efficient solution. Beyond environmental health, the contribution of this work lies in advancing data-driven decision support systems in Informatics, particularly for real-time monitoring and policy applications.
PELATIHAN DATABASE ADMINISTRATOR SISWA SMK INFORMATIKA WONOSOBO Maftukhah, Ainin; Subandi, Rio; Umar, Rusydi; Fadlil, Abdul
JURNAL PENGABDIAN KEPADA MASYARAKAT Vol. 29 No. 4 (2023): OKTOBER-DESEMBER
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/jpkm.v29i4.49159

Abstract

Pentingnya pengelolaan database yang efektif dalam dunia digital yang terus berkembang. Pentingnya pelatihan database untuk siswa dalam mengelola dan mengimplementasikan database menggunakan perintah SQL. Kegiatan pemberdayaan umat dilakukan dengan urutan langkah-langkah sebagai berikut, pertama persiapan melakukan studi literatur dan membuat database yang mudah dipahami oleh siswa. Kedua menyiapkan alat dan bahan pelatihan pembuatan database pembelajaran untuk mengelola data siswa. Ketiga mengidentifikasi dan menyiapkan materi, pretest, dan postest yang akan diberikan kepada peserta saat kegitan. Hasil kegiatan pemberdayaan umat yang dilaksanakan pada hari Senin, 12 Juni 2023 secara offline diikuti 20 siswa-siswi dari kelas X hingga XI SMK Informatika Wonosobo.Kegiatan pemberdayaan umat yang diselenggarakan menghasilkan pretest dan postest, terdapat perubahan pemahaman dan keterampilan peserta pelatihan administrator database. Hal ini ditunjukkan dengan nilai prestes 46,8%, sedangkan postest 48,5%.
DenseNet Architecture for Efficient and Accurate Recognition of Javanese Script Hanacaraka Character Sudewo, Egi Dio Bagus; Biddinika, Muhammad Kunta; Fadlil, Abdul
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 2 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i2.3855

Abstract

This study introduced a specifically optimized DenseNet architecture for recognizing Javanese Hanacaraka characters, focusing on enhancing efficiency and accuracy. The research aimed to preserve and celebrate Java’s rich cultural heritage and historical significance through the development of precise character recognition technology. The method used advanced techniques within convolutional neural networks (CNN) to integrate feature extraction across densely connected layers efficiently. The result of this study was that the developed model achieved a training accuracy of 100% and a validation accuracy of approximately 99.50% after 30 training epochs. Furthermore, when tested on previously unseen datasets, the model exhibited exceptional accuracy, precision, recall, and F1-score, reaching 100%. These findings underscored the remarkable capability of DenseNet architecture in character recognition, even across novel datasets, suggesting significant potential for automating Javanese Hanacaraka text processing across various applications, ranging from text recognition to digital archiving. The conclusion drawn from this study suggests that optimizing DenseNet architecture can be a significant step in preserving and developing character recognition technology for Javanese
Pengenalan Pola Depresi Berbasis Suara Menggunakan Ekstraksi Fitur Mel-Frequency Cepstral Coefficients Saputro, Wahju Tjahjo; Fadlil, Abdul; Murinto, Murinto
Jurnal PROCESSOR Vol 20 No 2 (2025): Jurnal Processor
Publisher : LPPM Universitas Dinamika Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33998/processor.2025.20.2.2513

Abstract

The identification of depression patterns from human voices is important because depression can interfere with activities, reduce interest in learning, and hinder socialisation. Depression is a significant problem today because there has been a global increase in the number of people suffering from it. The factors contributing to depression are numerous and complex, and can affect all groups, from children to the elderly. The purpose of this study was to identify depression patterns based on voice feature extraction. The feature extraction method used is Mel-Frequency Cepstral Coefficients (MFCC). The MFCC method is capable of extracting features that closely resemble the human auditory system. The dataset used is the EATD-Corpus, which contains 162 recordings of students from Tongji University in China. The results of the study show that depression and healthy patterns can be distinguished using MFCC parameters, namely 25 measurements per frame, 10 frame intervals, an alpha value of 0.97 as the pre-emphasis coefficient, a maximum of 40 Mel filterbank coefficients, and 12 cepstral coefficients. Classification thresholds can be obtained for two classes: healthy with thresholds < 53.00 and depressed ≥ 53.00 using the Self-Rating Depression Scale.
Face Recognition Using Machine Learning Algorithm Based on Raspberry Pi 4b Sunardi, Sunardi; Fadlil, Abdul; Prayogi, Denis
International Journal of Artificial Intelligence Research Vol 6, No 1 (2022): June 2022
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.574 KB) | DOI: 10.29099/ijair.v7i1.321

Abstract

Machine learning is one of artificial intelligence that is used to solve various problems, one of which is classification. Classification can separate a set of objects based on certain characteristics. This study discusses the classification of objects in the form of facial images with the aim of the system being able to recognize a person's face to access a room for security reasons. The application of machine learning using the support vector machine algorithm with the support vector classifier technique is implemented on a raspberry pi-based security device.  The results of training using this algorithm produce a model with 99% accuracy in 0.10 seconds based on testing data of 525 face images. The model evaluation got 99% precision, 99% recall, and 99% f1-score. Testing the model made from the training process using the raspberry pi model 4b is can recognize facial images in real-time.  If the security device detects someone at the door and then recognizes the face image then room access will be granted and an alarm is activated indicating the door is open.
Co-Authors Aang Anwarudin Abdul Azis Achmad Nugrahantoro Aditiya Dwi Candra Ahmat Taufik Aji Pamungkas Alfiansyah Imanda Putra Alfiansyah Imanda Putra Alfian Amiruddin, Nanda Fahmi Andrianto, Fiki Anggit Pamungkas Annisa, Putri Anton Yudhana Anwar Siswanto ANWAR, FAHMI Arief Setyo Nugroho Arief Setyo Nugroho Arif Budi Setianto Arif Budiman Arif Budiman Arif Wirawan Muhammad Aris Rakhmadi Asno Azzawagama Firdaus Atmojo, Dimas Murtia Aulia, Aulia Az-Zahra, Rifqi Rahmatika Aznar Abdillah, Muhamad Bagus Primantoro Basir, Azhar Candra, Aditiya Dwi Darajat, Muhammad Nashiruddin Davito Rasendriya Rizqullah Putra Dewi Soyusiawaty Dhimas Dwiki Sanjaya Dian Permata Sari Dianda Rifaldi Dikky Praseptian M Dimas Murtia Atmojo Doddy Teguh Yuwono Dwi Susanto Dwi Susanto Edy Fathurrozaq Egi Dio Bagus Sudewo Eko Prianto Eko Prianto Elvina, Ade Ermin Al Munawar Ermin Ermin Esthi Dyah Rikhiana Fahmi Anwar Fahmi Auliya Tsani Fahmi Auliya Tsani Fahmi Fachri Fanani, Galih Faqihuddin Al-anshori Faqihuddin Al-Anshori, Faqihuddin Fathurrahman, Haris Imam Karim Fauzi Hermawan Fiki Andrianto Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Yasin Fitri Muwardi Furizal Gusrin, Muhaimin Gustina, Sapriani Hafizh, Muhammad Nasir Hanif, Abdullah Hanif, Kharis Hudaiby Harman, Rika Helmiyah, Siti Hendril Satrian Purnama Herdiyanto, Erik Herman Herman Herman Yuliansyah, Herman Herman, - Ibnu Rifajar Ibrahim Mohd Alsofyani Ihyak Ulumuddin Ikhsan hidayat Ilhamsyah Muhammad Nurdin Imam Riadi Imam Riadi Imam Riadi Imam Riadi Imam Riadi Imam Riadi Imam Riadi Irjayana, Rizky Caesar Irwansyah Irwansyah Izzan Julda D.E Purwadi Putra januari audrey Jayawarsa, A.A. Ketut Jogo Samodro, Maulana Muhamammad Joko Supriyanto Joko Supriyanto Kamilah, Farhah Kartika Firdausy Khoirunnisa, Itsnaini Irvina Kusuma, Nur Makkie Perdana Laura Sari Lestari, Yuniarti Lestari, Yuniarti Lin, Yu-Hao Luh Putu Ratna Sundari M. Nasir Hafizh Maftukhah, Ainin Maulana Muhammad Jogo Samudro Mini, Ros Mohd Hatta Jopri Muammar Mudinillah, Adam Mufaddal Al Baqir Muh. Fadli Hasa Muhaimin Gusrin Muhajir Yunus Muhamad Daffa Al Fitra Muhamad Rosidin Muhammad Faqih Dzulqarnain, Muhammad Faqih Muhammad Johan Wahyudi Muhammad Kunta Biddinika Muhammad Ma’ruf Muhammad Nasir Hafizh Muhammad Nur Faiz Muhammad Nurdin, Ilhamsyah Muhammad Rizki Setyawan Muntiari, Novita Ranti Murinto Murinto - Murinto Murinto Murni Murni Musliman, Anwar Siswanto Mustofa Mustofa Muwardi, Fitri Nasution, Dewi Sahara Nasution, Musri Iskandar Nurwijayanti Pahlevi, Ryan Fitrian Ponco Sukaswanto Poni Wijayanti Prabowo, Basit Adhi Prayogi, Denis Priambodo, Bambang Putra, Fajar R. B Putri Annisa Putri Annisa Putri Purnamasari Putri Silmina, Esi Ramadhani, Muhammad Ramdhani, Rezki Razak, Farhan Radhiansyah Rezki Rezki Rifqi Rahmatika Az-Zahra Rizky Andhika Surya Rochmadi, Tri Roni Anggara Putra Rusydi Umar Rusydi Umar S Sunardi S, Sunardi Saad, Saleh Khalifah Safiq Rosad Saifudin Saifudin Saifullah, Shoffan Saleh khalifa saad Santi Purwaningrum Sarmini Sarmini Septa, Frandika Setyaputri, Khairina Eka Setyaputri, Khairina Eka Setyaputri, Khairina Eka Shinta Nur Desmia Sari Siti Helmiyah Subandi, Rio Sukaswanto, Ponco Sukma Aji Sulis Triyanto Sunardi Sunardi Sunardi Sunardi, Sunardi Surya Yeki Surya Yeki Syamsiar, Syamsiar Syarifudin, Arma Tole Sutikno Tresna Yudha Prawira Tresna Yudha Prawira Tri Ferga Prasetyo Tristanti, Novi Tuswanto Tuswanto Virdiana Sriviana Fatmawaty Wahju Tjahjo Saputro Wahyusari, Retno Winoto, Sakti Wintolo, Hero Wulandari, Cisi Fitri Yana Mulyana Yana Mulyana Yasidah Nur Istiqomah Yeki, Surya Yohanni Syahra Yossi Octavina Yulianto, Dinan Yulianto, Muhammad Anas Yuminah yuminah Yuminah, Yuminah yuminah, Yuminah Yuwono Fitri Widodo Zein, Wahid Alfaridsi Achmad Zulhijayanto -