p-Index From 2021 - 2026
12.649
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IJCCS (Indonesian Journal of Computing and Cybernetics Systems) JURNAL SISTEM INFORMASI BISNIS Proceedings of KNASTIK Techno.Com: Jurnal Teknologi Informasi TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Jurnal Informatika SPEKTRUM INDUSTRI Jurnal Sarjana Teknik Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Jurnal Teknik Elektro Bulletin of Electrical Engineering and Informatics Jurnal Teknologi Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Scientific Journal of Informatics Seminar Nasional Informatika (SEMNASIF) Jurnas Nasional Teknologi dan Sistem Informasi JURNAL PENGABDIAN KEPADA MASYARAKAT Jurnal Teknologi Elektro INFORMAL: Informatics Journal Proceeding SENDI_U Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Bulletin of Electrical Engineering and Informatics JOIN (Jurnal Online Informatika) Edu Komputika Journal Jurnal Teknologi dan Sistem Komputer JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Jurnal Informatika Jurnal Khatulistiwa Informatika Journal of Information Technology and Computer Science (JOINTECS) Jurnal Ilmiah FIFO INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi AKSIOLOGIYA : Jurnal Pengabdian Kepada Masyarakat JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control CogITo Smart Journal IT JOURNAL RESEARCH AND DEVELOPMENT InComTech: Jurnal Telekomunikasi dan Komputer Insect (Informatics and Security) : Jurnal Teknik Informatika JURNAL REKAYASA TEKNOLOGI INFORMASI PROCESSOR Jurnal Ilmiah Sistem Informasi, Teknologi Informasi dan Sistem Komputer Applied Information System and Management ILKOM Jurnal Ilmiah Compiler MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer CYBERNETICS Digital Zone: Jurnal Teknologi Informasi dan Komunikasi J-SAKTI (Jurnal Sains Komputer dan Informatika) JUMANJI (Jurnal Masyarakat Informatika Unjani) JURTEKSI RESISTOR (Elektronika Kendali Telekomunikasi Tenaga Listrik Komputer) Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika Informatika : Jurnal Informatika, Manajemen dan Komputer Jurnal Ilmiah Mandala Education (JIME) Systemic: Information System and Informatics Journal EDUMATIC: Jurnal Pendidikan Informatika Building of Informatics, Technology and Science Jurnal Mantik Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi JISKa (Jurnal Informatika Sunan Kalijaga) Buletin Ilmiah Sarjana Teknik Elektro Mobile and Forensics Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls (AVITEC) Journal of Robotics and Control (JRC) Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Cyber Security dan Forensik Digital (CSFD) JTIULM (Jurnal Teknologi Informasi Universitas Lambung Mangkurat) International Journal of Advances in Data and Information Systems Edunesia : jurnal Ilmiah Pendidikan Journal of Innovation Information Technology and Application (JINITA) Infotech: Journal of Technology Information Jurnal Teknologi Informatika dan Komputer Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal Teknik Informatika (JUTIF) JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) Humanism : Jurnal Pengabdian Masyarakat International Journal of Robotics and Control Systems J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Informatika Teknologi dan Sains (Jinteks) Techno Jurnal Pengabdian Informatika (JUPITA) Jurnal INFOTEL Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics Jurnal Karya untuk Masyarakat (JKuM) Control Systems and Optimization Letters Signal and Image Processing Letters Scientific Journal of Engineering Research SEMINAR TEKNOLOGI MAJALENGKA (STIMA) Edumaspul: Jurnal Pendidikan Methods in Science and Technology Studies
Claim Missing Document
Check
Articles

Optimizing Banana Type Identification: An Support Vector Machine Classification-Based Approach for Cavendish, Mas, and Tanduk Varieties Pamungkas, Aji; Fadlil, Abdul
Buletin Ilmiah Sarjana Teknik Elektro Vol. 5 No. 4 (2023): December
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v5i4.9145

Abstract

This research focuses on addressing the need for improved efficiency in the agricultural sector, particularly in banana processing in Indonesia, where the demand for bananas is consistently high. To improve the efficiency of banana processing, the research proposes the development of a machine learning based solution for automatic banana type selection. This solution uses image data of three banana types (Cavendish, Mas, and Tanduked) captured by a microscopic camera. The images are subjected to feature extraction, and a Support Vector Machine (SVM) algorithm is used to train the model. The results are implemented in a graphical user interface (GUI). The experimental results show promising results, with an accuracy of 86.67%, a precision of 87.78%, and an error rate of 13.33%, achieved with SVM parameters of C = 1000 and a linear kernel. This automated approach provides a practical and sustainable solution to the labor-intensive manual banana variety selection process, thus increasing the efficiency of the banana processing industry.
JAVANESE SCRIPT HANACARAKA CHARACTER PREDICTION WITH RESNET-18 ARCHITECTURE Sudewo, Egi Dio Bagus; Biddinika, Muhammad Kunta; Fadlil, Abdul
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 10 No. 2 (2024): Maret 2024
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v10i2.3017

Abstract

Abstract: This study aims to train computers to recognize Javanese script characters known as Hanacaraka. The evaluation was conducted on the use of Convolutional Neural Network (CNN) with the ResNet-18 architecture in recognizing these characters. The research objective is to overcome traditional character recognition barriers and improve accuracy. The method employed includes building a CNN model with the ResNet-18 architecture and using diverse datasets. The results show a training accuracy of 100%, validation accuracy of 98.01%, and accuracy, precision, recall, and F1-score each at 100%. This study concludes that the developed model successfully achieves a high level of accuracy and contributes positively to the development of Javanese Hanacaraka character recognition technology. Keywords: convolution neural network (CNN); javanese hanacaraka script; resnet-18           Abstrak: Penelitian ini bertujuan melatih komputer untuk mengenali huruf aksara Jawa Hanacaraka. Evaluasi dilakukan terhadap penggunaan Convolutional Neural Network (CNN) dengan arsitektur ResNet-18 dalam pengenalan karakter tersebut. Tujuan penelitian adalah mengatasi hambatan pengenalan karakter tradisional dan meningkatkan akurasi. Metode yang digunakan mencakup pembuatan model CNN dengan arsitektur ResNet-18 dan penggunaan dataset yang beragam. Hasilnya menunjukkan akurasi pelatihan 100%, validasi 98.01%, dan akurasi, presisi, recall, dan F1-score masing-masing sebesar 100%. Simpulan penelitian ini adalah bahwa model yang dikembangkan berhasil mencapai tingkat akurasi yang tinggi dan memberikan kontribusi positif pada pengembangan teknologi pengenalan karakter Hanacaraka Jawa.Kata kunci: convolution neural network (CNN); huruf aksara jawa hanacaraka; resnet-18 
KLASIFIKASI JENIS KULIT WAJAH MENGGUNAKAN ALGORITMA RANDOM FOREST Irwansyah, Irwansyah; Yudhana, Anton; Fadlil, Abdul
Infotech: Journal of Technology Information Vol 11, No 2 (2025): NOVEMBER
Publisher : ISTEK WIDURI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37365/jti.v11i2.423

Abstract

Skin can be considered the largest organ in the human body. Healthy skin is not only good for the body, but alsoenhances the appearance. Good skin care is essential at any age. In the first few decades of life, the skin has aconsiderable supply of elastin and collagen, but it will gradually decrease. In addition, daily lifestyle can also directlyaffect the appearance of human skin. The purpose of the research is to develop a model that classifies facial skin typesbased on physiological data using random forest algorithm and measure the results of accuracy, precision, and recall.This research uses Rapidminer tools and four facial skin types namely dry, combination, normal, and oily. The resultsof random forest research obtained accuracy results of 93.25%. dry precision 98.02%, combination precision 92.94%,normal precision 93.46%, and oily precision 88.79%. While dry recall 99%, combination recall 79%, normal recall100%, and oily recall 95%. The findings of this research can help create a skincare recommendation system that ismore suited to the needs of each individual.
Klasifikasi Citra Kupu-Kupu Menggunakan Convolutional Neural Network dengan Arsitektur AlexNet Maftukhah, Ainin; Fadlil, Abdul; Sunardi, Sunardi
JURNAL INFOTEL Vol 16 No 1 (2024): February 2024
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v16i1.1004

Abstract

Kurangnya pengetahuan tentang kupu-kupu dapat menimbulkan masalah karena kupu-kupu berperan penting dalam ekosistem. Urgensi dalam penelitian ini terkait dengan bidang biologi yaitu klasifikasi citra kupu-kupu dapat membantu dalam memahami pola migrasi, pola kawin, dan pola perilaku kupu-kupu dalam interaksinya dengan lingkungan sekitarnya. Tujuan dari penelitian ini adalah untuk mengklasifikasikan spesies kupu-kupu. Dataset yang digunakan adalah dataset citra kupu-kupu sebanyak 5.499 dengan total 50 spesies. Metode yang diterapkan adalah convolution neural network (CNN) dengan arsitektur AlexNet. Proses pelatihan menggunakan arsitektur AlexNet diawali dengan input dataset citra, dataset akan diproses terlebih dahulu seperti resizing dan RGB to grayscale.Kemudian lakukan filter atau kernel. Output dari kernel digunakan untuk melakukan pooled convolution. Konvolusi dan pooling dilakukan sebanyak lima kali. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Setiap hasil max pooling terakhir diratakan tiga kali untuk mengubah gambar berbentuk matriks menjadi tiga dimensi. Setelah itu, terhubung sepenuhnya. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Tahap terakhir adalah citra dapat diklasifikasikan. Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu. Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. Tahap terakhir adalah citra dapat diklasifikasikan.Proses pengujian menggunakan arsitektur AlexNet diawali dengan input dataset citra, dilakukan preprocessing dataset seperti resizing dan RGB to grayscale. Kemudian dataset diklasifikasikan dengan arsitektur AlexNet CNN. Setelah itu dilakukan evaluasi model, dan terakhir adalah hasil klasifikasi citra kupu-kupu. Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. dan hasil terakhir pengklasifikasian citra kupu-kupu. Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200. dan hasil terakhir pengklasifikasian citra kupu-kupu.Hasil klasifikasi diperoleh akurasi sebesar 80% dengan resize 100x100, 82% dengan resize 150x150, dan 82% dengan resize 200x200.
KERANGKA DASAR JOINT FUSION MULTI-MODAL ARTIFICIAL INTERNET OF THINGS UNTUK PERTANIAN HORTIKULTURA Prasetyo, Tri Ferga; Sunardi; Fadlil, Abdul
SEMINAR TEKNOLOGI MAJALENGKA (STIMA) Vol 9 (2025): Seminar Teknologi Majalengka (STIMA) 9.0 Tahun 2025
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This paper proposes a joint-fusion multi-modal Artificial Intelligence of Things (AIoT) framework for precision horticulture on chili and tomato. We fuse time-series IoT signals (air/leaf temperature, humidity, soil moisture, pH, EC, PAR) with RGB/multispectral images of leaves, fruits, and canopy via an attention-based shared representation. In a 500 m² field trial in Majalengka with >5,000 labeled images and synchronized IoT streams (10-minute interval), our model outperforms single-modal baselines. For chili leaf disease detection, joint fusion reaches 90.0% accuracy (IoT-only 72.0%, vision-only 81.0%). For tomato maturity classification, it achieves 92.0% accuracy (IoT-only 68.0%, vision-only 84.0%). For yield estimation, the multi-modal regressor attains R² = 0.89. We detail data synchronization, train/validation/test splits, baseline configurations (IoT-LSTM, CNN/ViT, early/late fusion), and deployment on an edge-cloud pipeline. The results indicate that modeling cross-modal interactions improves robustness and decision support for irrigation, fertilization, and harvest scheduling. We conclude with ablation analyses and practical implications for Indonesian precision agriculture.
Empowering Teachers in Muhammadiyah Boarding School Yogyakarta toward Safer Digital Behavior through Smartphone Security Education Rakhmadi, Aris; Wintolo, Hero; Putri Silmina, Esi; Soyusiawaty, Dewi; Sunardi; Fadlil, Abdul
JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) Vol. 6 No. 4 (2025)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/jurpikat.v6i4.2843

Abstract

Abstract: This community-service program was implemented through the Program Pemberdayaan Umat (PRODAMAT) of Universitas Ahmad Dahlan with the aim of enhancing digital literacy and cybersecurity awareness among teachers at Muhammadiyah Boarding School (MBS) Yogyakarta. The activity focused on smartphone account security education through practical steps such as password management, two-factor authentication (2FA), and phishing awareness. A participatory approach was applied through training involving 15 teachers and staff, combining interactive discussions, demonstrations, and pretest–posttest evaluation. The results showed an increase in the average knowledge score from 4.63 to 4.90, digital awareness from 4.05 to 4.45, and intention and safe digital behavior from 4.35 to 4.73. These improvements reflect positive changes in participants’ understanding, awareness, and behavior toward digital security. The program highlights the importance of integrating technological skills with ethical and religious values to promote sustainable digital empowerment in Islamic educational environments.
Baseline Evaluation of Backpropagation Artificial Neural Network for Visual Image-Based Vehicle Type Classification Harman, Rika; Riadi, Imam; Fadlil, Abdul
Compiler Vol 14, No 2 (2025)
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/compiler.v14i2.3210

Abstract

The increasing number of vehicles in urban areas requires technology-based solutions for efficient transportation management. This study proposes a vehicle classification model using Artificial Neural Networks (ANN) with the backpropagation algorithm, based on digital image data. The model is a feedforward neural network comprising an input layer, a hidden layer with 64 sigmoid-activated neurons, and an output layer with 7 softmax-activated neurons. The dataset, sourced from Roboflow Inc., consists of 16,185 images across eight vehicle classes: Hummer, Toyota Innova, Hyundai Creta, Suzuki Swift, Audi, Mahindra Scorpio, Rolls Royce, and Tata Safari. The data is split 80:20 for training and testing. Input features include vehicle dimensions, dominant RGB color, number of axles, and license plate detection. The model is trained using gradient descent and categorical crossentropy loss. Evaluation results show 85% validation accuracy at epoch 28 and 100% test accuracy. Precision, recall, and F1-score indicate strong performance, though minor errors occur in visually similar classes. These findings demonstrate that backpropagation-based ANN is effective for vehicle classification and can be applied in systems such as automatic parking and traffic monitoring
Developing a Delphi Validated Instrument for Assessing Digital Forensics Readiness Based on COBIT 2019 Rochmadi, Tri; Fadlil, Abdul; Riadi, Imam
International Journal of Advances in Data and Information Systems Vol. 6 No. 3 (2025): December 2025 - International Journal of Advances in Data and Information Syste
Publisher : Indonesian Scientific Journal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59395/ijadis.v6i3.1453

Abstract

The increasing complexcity of cyber threats has reinforced the need for robust digital forensic readiness in higher education institutions. However, existing frameworks often lack integration between forensic capabilities and IT governance practices. Objective: This study aims to develop and validate a new instrument to assess digital forensic readiness based on the COBIT 2019 framework. Methods: A three-round Delphi process was conducted with seven digital forensics and IT governance experts to develop and validate a new instrument comprising forty proposed indicators across six domains. Result : The instrument achieved full context, with  I-CVI values increasing from 0.60 to 0.99 and IQR values reaching  1.00 across all items. Implications: The validated instrument integrates governance and forensic principles, providing a standardized tool for institutional self-assessment and policy development, while contributing methodologically through the use of a structured Delphi validation process.
PERBANDINGAN CNN UNTUK DETEKSI PENYAKIT DAUN TANAMAN NEW PLANT DISEASES BERBASIS CLOUD COMPUTING Priambodo, Bambang; Fadlil, Abdul; Sunardi
Jurnal Informatika Teknologi dan Sains (Jinteks) Vol 7 No 4 (2025): EDISI 26
Publisher : Program Studi Informatika Universitas Teknologi Sumbawa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51401/jinteks.v7i4.6782

Abstract

Penyakit tanaman merupakan ancaman serius bagi ketahanan pangan global, sehingga deteksi dini yang akurat penting untuk meminimalkan kerugian panen. Perkembangan Convolutional Neural Networks (CNN) memungkinkan klasifikasi penyakit daun dengan akurasi tinggi, namun keterbatasan komputasi sering menghambat, terutama di negara berkembang. Untuk itu, dibutuhkan arsitektur CNN ringan namun andal yang dapat diimplementasikan pada cloud platform (CP) dengan sumber daya terbatas. Penelitian ini membandingkan tiga arsitektur CNN—MobileNetV3-Small, EfficientNetB0, dan ResNet-50—dengan pendekatan transfer learning dua tahap menggunakan teknik unfreeze-layer. Dataset yang digunakan adalah New Plant Diseases yang mencakup 85.486 citra dari 38 kelas dan 14 spesies dengan rasio 82:13:5. Eksperimen dilakukan pada cloud platform menggunakan pipeline replikatif dengan konfigurasi hyperparameter dan callback seragam. Hasil menunjukkan ResNet-50 meraih akurasi uji tertinggi (99,34%), MobileNetV3-Small sesuai untuk keterbatasan ekstrem (97,16%) namun memilik  9 kelas dengan performa di bawah 95%, sedangkan EfficientNetB0 menawarkan keseimbangan (98,92%) dengan hanya satu kelas bermasalah. Ini konsisten dengan studi sebelumnya yang mengadaptasi EfficientNetB0 (98,4%) serta variannya dengan Focal Loss (99,72%) dan ResNet-50 (95,1%) dengan subset New Plant Diseases 10 kelas dengan rasio 80:20. Temuan ini menegaskan trade-off akurasi–efisiensi lebih nyata, sekaligus memberi rekomendasi praktis pemilihan arsitektur CNN untuk sistem deteksi penyakit tanaman berbasis komputasi terbatas di negara berkembang.
Identification of Learning Javanese Script Handwriting Using Histogram Chain Code Arif Budiman; Abdul Fadlil; Rusydi Umar
Edumaspul: Jurnal Pendidikan Vol 7 No 1 (2023): Edumaspul: Jurnal Pendidikan
Publisher : Universitas Muhammadiyah Enrekang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

One of the wealth of the Indonesian nation is the many tribes with their own languages and scripts. One of the scripts that has existed since long before the independence of the State of Indonesia is the Javanese script, with the use of Latin script used by almost every aspect of life, both official official activities and daily use, the use of traditional scripts, especially Javanese script, is increasingly scarce. To facilitate learning the Javanese script, learning media is needed with the ability to recognize Javanese characters. In this study, pre-processing was used, especially feature extraction using the Histogram Chain Code (HCC) method and classification using artificial neural networks using the Multi Layer Perceptron method. This study compares four research models by setting the number of HCC feature extraction parameters obtained from one intact image and 3 divided images of 4, 9 and 16 parts respectively so that the total parameters of each HCC model are 8, 32, 72 and 128 parameters characteristic. The training and testing process using the Multi Layer Perceptron method uses 2000 handwritten Javanese script image data which is divided into 80%, namely 1600 images for the training process and 400 images for the testing process. This research resulted in different accuracies, namely 57%, 78%, 83% and 76%. The best accuracy is obtained from the HCC model with 72 parameters and the image is divided into 9 sections.
Co-Authors Aang Anwarudin Abdul Azis Achmad Nugrahantoro Aditiya Dwi Candra Ahmat Taufik Aji Pamungkas Alfiansyah Imanda Putra Alfiansyah Imanda Putra Alfian Amiruddin, Nanda Fahmi Andrianto, Fiki Anggit Pamungkas Annisa, Putri Anton Yudhana Anwar Siswanto ANWAR, FAHMI Arief Setyo Nugroho Arief Setyo Nugroho Arif Budi Setianto Arif Budiman Arif Budiman Arif Wirawan Muhammad Aris Rakhmadi Asno Azzawagama Firdaus Atmojo, Dimas Murtia Aulia, Aulia Az-Zahra, Rifqi Rahmatika Aznar Abdillah, Muhamad Bagus Primantoro Basir, Azhar Candra, Aditiya Dwi Darajat, Muhammad Nashiruddin Davito Rasendriya Rizqullah Putra Dewi Soyusiawaty Dhimas Dwiki Sanjaya Dian Permata Sari Dianda Rifaldi Dikky Praseptian M Dimas Murtia Atmojo Doddy Teguh Yuwono Dwi Susanto Dwi Susanto Edy Fathurrozaq Egi Dio Bagus Sudewo Eko Prianto Eko Prianto Elvina, Ade Ermin Al Munawar Ermin Ermin Esthi Dyah Rikhiana Fahmi Anwar Fahmi Auliya Tsani Fahmi Auliya Tsani Fahmi Fachri Fanani, Galih Faqihuddin Al-anshori Faqihuddin Al-Anshori, Faqihuddin Fathurrahman, Haris Imam Karim Fauzi Hermawan Fiki Andrianto Firmansyah Firmansyah Firmansyah Firmansyah Firmansyah Yasin Fitri Muwardi Furizal Gusrin, Muhaimin Gustina, Sapriani Hafizh, Muhammad Nasir Hanif, Abdullah Hanif, Kharis Hudaiby Harman, Rika Helmiyah, Siti Hendril Satrian Purnama Herdiyanto, Erik Herman Herman Herman Yuliansyah, Herman Herman, - Ibnu Rifajar Ibrahim Mohd Alsofyani Ihyak Ulumuddin Ikhsan hidayat Ilhamsyah Muhammad Nurdin Imam Riadi Imam Riadi Imam Riadi Imam Riadi Imam Riadi Imam Riadi Imam Riadi Irjayana, Rizky Caesar Irwansyah Irwansyah Izzan Julda D.E Purwadi Putra januari audrey Jayawarsa, A.A. Ketut Jogo Samodro, Maulana Muhamammad Joko Supriyanto Joko Supriyanto Kamilah, Farhah Kartika Firdausy Khoirunnisa, Itsnaini Irvina Kusuma, Nur Makkie Perdana Laura Sari Lestari, Yuniarti Lestari, Yuniarti Lin, Yu-Hao Luh Putu Ratna Sundari M. Nasir Hafizh Maftukhah, Ainin Maulana Muhammad Jogo Samudro Mini, Ros Mohd Hatta Jopri Muammar Mudinillah, Adam Mufaddal Al Baqir Muh. Fadli Hasa Muhaimin Gusrin Muhajir Yunus Muhamad Daffa Al Fitra Muhamad Rosidin Muhammad Faqih Dzulqarnain, Muhammad Faqih Muhammad Johan Wahyudi Muhammad Kunta Biddinika Muhammad Ma’ruf Muhammad Nasir Hafizh Muhammad Nur Faiz Muhammad Nurdin, Ilhamsyah Muhammad Rizki Setyawan Muntiari, Novita Ranti Murinto Murinto - Murinto Murinto Murni Murni Musliman, Anwar Siswanto Mustofa Mustofa Muwardi, Fitri Nasution, Dewi Sahara Nasution, Musri Iskandar Nurwijayanti Pahlevi, Ryan Fitrian Ponco Sukaswanto Poni Wijayanti Prabowo, Basit Adhi Prayogi, Denis Priambodo, Bambang Putra, Fajar R. B Putri Annisa Putri Annisa Putri Purnamasari Putri Silmina, Esi Ramadhani, Muhammad Ramdhani, Rezki Razak, Farhan Radhiansyah Rezki Rezki Rifqi Rahmatika Az-Zahra Rizky Andhika Surya Rochmadi, Tri Roni Anggara Putra Rusydi Umar Rusydi Umar S Sunardi S, Sunardi Saad, Saleh Khalifah Safiq Rosad Saifudin Saifudin Saifullah, Shoffan Saleh khalifa saad Santi Purwaningrum Sarmini Sarmini Septa, Frandika Setyaputri, Khairina Eka Setyaputri, Khairina Eka Setyaputri, Khairina Eka Shinta Nur Desmia Sari Siti Helmiyah Subandi, Rio Sukaswanto, Ponco Sukma Aji Sulis Triyanto Sunardi Sunardi Sunardi Sunardi, Sunardi Surya Yeki Surya Yeki Syamsiar, Syamsiar Syarifudin, Arma Tole Sutikno Tresna Yudha Prawira Tresna Yudha Prawira Tri Ferga Prasetyo Tristanti, Novi Tuswanto Tuswanto Virdiana Sriviana Fatmawaty Wahju Tjahjo Saputro Wahyusari, Retno Winoto, Sakti Wintolo, Hero Wulandari, Cisi Fitri Yana Mulyana Yana Mulyana Yasidah Nur Istiqomah Yeki, Surya Yohanni Syahra Yossi Octavina Yulianto, Dinan Yulianto, Muhammad Anas Yuminah yuminah yuminah, Yuminah Yuminah, Yuminah Yuwono Fitri Widodo Zein, Wahid Alfaridsi Achmad Zulhijayanto -