Abstrak− Dengan kemajuan teknologi, penggunaan internet semakin meluas di Indonesia dan turut mendorong perkembangan e-commerce. Namun, masih terdapat beberapa permasalahan yang perlu diselesaikan, salah satunya adalah kurangnya kepercayaan konsumen terhadap platform e-commerce. Oleh karena itu, penelitian tentang platform e-commerce seperti Shopee perlu dilakukan untuk memahami arah sentimen pengguna. Analisis sentimen digunakan untuk mengklasifikasikan sentimen ulasan pengguna Shopee. Penelitian ini bertujuan untuk membandingkan performa algoritma klasifikasi berdasarkan proses data mining menggunakan CRISP-DM. Algoritma klasifikasi yang digunakan adalah Support Vector Machine (SVM), Random Forest, dan Logistic Regression. Pengujian menggunakan 3.000 data, dengan 90% data training dan 10% data testing. Hasil pelabelan data menunjukkan bahwa sentimen positif berjumlah 307, sentimen netral 2.537, dan sentimen negatif 156. Hasil pengujian akurasi menggunakan confusion matrix menunjukkan bahwa algoritma Random Forest memiliki akurasi tertinggi sebesar 94%, diikuti oleh Support Vector Machine (SVM) sebesar 91%, dan Logistic Regression sebesar 86%. Penelitian ini berhasil mendapatkan algoritma yang efektif dan terbaik dalam mengklasifikasikan sentimen ulasan positif, sentimen ulasan netral, dan sentimen ulasan negatif terkait dengan aplikasi Shopee. Hasil dari algoritma terbaik tersebut akan diintegrasikan dalam antarmuka web menggunakan bahasa pemrograman PHP dan Python, untuk mengetahui arah sentimen yang akan dimasukan di masa mendatang.Kata Kunci: e-commerce, sentimen pengguna, analisis sentimen, algoritma klasifikasi, shopee.