Claim Missing Document
Check
Articles

SISTEMATIK LITERATUR REVIEW SYSTEMATIC LITERATURE REVIEW: KEMAMPUAN BERPIKIR KRITIS MATEMATIS PADA MODEL PEMBELAJARAN STUDENT FACILITATOR AND EXPLAINING (SFE) Khunaeni, Sirilivia; Mastur, Zaenuri; Walid; Mariani, Scolastika; Hendikawati, Putriaji
Symmetry: Pasundan Journal of Research in Mathematics Learning and Education Vol. 8 No. 2 (2023): Symmetry: Pasundan Journal of Research in Mathematics Learning and Education
Publisher : Mathematics Education Study Program, FKIP, Universitas Pasundan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23969/symmetry.v8i2.10920

Abstract

The purpose of writing this article is to explain the relationship between the Student Facilitator and Developing (SFE) learning model in mathematics learning and students' critical thinking abilities. The method used in this study is Literary Study. The literature study is carried out by searching various written sources, in the form of books, archives, magazines, articles and journals, or documents that are relevant to the problem being studied. By using 10 articles that have met the inclusion criteria, namely research subjects of middle school - high school students, meeting synta 1-4 and in the years 2013-2023. These articles were searched using national and international journal databases, namely Google Scholar, Garuda, Researchgate, Scopus and Science Direct. The findings showed that junior high school students' abilities in mathematical critical thinking skills were influenced after using the Student Facilitator and Developing (SFE) learning model. For further research, we can examine more broadly the use of the SFE model and its influence in critical mathematical thinking at various levels of educational units.
KEMAMPUAN PEMECAHAN MASALAH DITINJAU DARI METAKOGNISI PADA MODEL PROBLEM BASED LEARNING BERBANTUAN GOOGLE CLASSROOM khunaeni, sirilivia; Scolastika Mariani; Putriaji Hendikawati
Symmetry: Pasundan Journal of Research in Mathematics Learning and Education Vol. 9 No. 2 (2024): Symmetry: Pasundan Journal of Research in Mathematics Learning and Education
Publisher : Mathematics Education Study Program, FKIP, Universitas Pasundan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23969/symmetry.v9i2.16897

Abstract

Based on the results of interviews with teachers at SMP N 16 Semarang, it is known that in the learning process, students are not yet optimal in their mathematical problem solving abilities. This research aims to: (1) find out whether the Problem Based Learning learning model assisted by Google Classroom is effective on students' mathematical problem solving abilities, (2) find out the proportion of students' mathematical problem solving ability who obtain the Problem Based Learning model assisted by Google Classroom is higher than the proportion the mathematical problem solving ability of students who receive conventional learning, (3) knowing that the mathematical problem solving ability of students who receive the Problem Based Learning model assisted by Google Classroom is higher than conventional learning, and (4) whether there is an increase in students' mathematical problem solving ability after implementing Problem Based Learning model assisted by Google Classroom. The method used is mixed method sequential explanatory design. The research population was class VIII students at SMP Negeri 16 Semarang for the 2023/2024 academic year. The research subjects consisted of 6 students, namely 2 high, 2 medium and 2 low metacognition categories.
Kemampuan representasi matematis peserta didik pada pembelajaran Think Pair Share berbantuan media Canva Setiani, Ida; Hendikawati, Putriaji
Primatika : Jurnal Pendidikan Matematika Vol. 13 No. 2 (2024)
Publisher : Program Studi Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/primatika.v13i2.4118

Abstract

Salah satu kemampuan dasar yang harus dimiliki oleh peserta didik adalah kemampuan representasi matematis. Dengan kemampuan representasi yang dimiliki, peserta didik dapat membuat hal-hal yang rumit menjadi lebih sederhana, sehingga dapat mengatasi atau menyelesaikan masalah dengan lebih mudah dan efisien. Tujuan dari penelitian ini adalah untuk menguji keefektifan pembelajaran Think Pair Share (TPS) berbantuan media Canva terhadap kemampuan representasi matematis peserta didik. Metode yang digunakan adalah metode kuantitatif. Penelitian ini menerapkan quasi experimental design dengan bentuk posttest-only control design. Populasi dari penelitian ini adalah peserta didik kelas VIII SMPN 3 Ungaran tahun ajaran 2023/2024. Pengambilan sampel dilakukan dengan teknik cluster random sampling dan diperoleh kelas VIII E sebagai kelompok eksperimen dan kelas VIII C sebagai kelompok kontrol. Hasil penelitian menunjukkan bahwa pembelajaran TPS berbantuan media Canva efektif terhadap kemampuan representasi matematis karena memenuhi kriteria yaitu: 1) Kemampuan representasi matematis peserta didik pada pembelajaran TPS berbantuan media Canva mencapai ketuntasan belajar secara klasikal; 2) Rata-rata kemampuan representasi matematis peserta didik pada pembelajaran TPS berbantuan media Canva lebih baik daripada rata-rata kemampuan representasi matematis peserta didik pada pembelajaran Problem Based Learning; dan 3) Proporsi ketuntasan hasil tes kemampuan representasi matematis peserta didik pada pembelajaran TPS berbantuan media Canva lebih tinggi daripada ketuntasan hasil tes kemampuan representasi matematis peserta didik pada pembelajaran Problem Based Learning.
Perbandingan Akurasi Metode ANN dengan FTS Model Chen, Cheng, dan Marcov Chain terhadap Peramalan Harga Penutupan Saham Zoom Video Communication Khanifah, Khanifah; Hendikawati, Putriaji
Journal of Multidisciplinary Inquiry in Science, Technology and Educational Research Vol. 2 No. 1b (2025): NOVEMBER 2024 - JANUARI 2025 (TAMBAHAN)
Publisher : UNIVERSITAS SERAMBI MEKKAH

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/mister.v2i1b.2585

Abstract

Stock price forecasting has become one of the important areas after the COVID-19 pandemic. This study aims to compare the accuracy of forecasting the closing price of Zoom Video Communication, Inc. shares using the Artificial Neural Network (ANN) Backpropagation and Fuzzy Time Series (FTS) methods with the Chen, Cheng, and Marcov Chain models. The data used in this study includes the closing price of shares from the period July 5, 2019 to January 4, 2024. Each method is evaluated using accuracy metrics such as RMSE, MSE, and MAPE. The results of the analysis show that ANN has a lower error rate than the FTS model, especially in predicting the closing price of Zoom Video Communication, Inc. The ANN method has proven to be more reliable in providing more accurate predictions.
PERSEPSI MAHASISWA TERHADAP SISTEM APLIKASI SIMPKL PADA IMPLEMENTASI KEGIATAN PRAKTEK KERJA LAPANGAN MENGGUNAKAN ANALISIS TAM Putriaji Hendikawati; Nur Hidayati
Jurnal TAM (Technology Acceptance Model) Vol 10, No 2 (2019): Jurnal TAM (Technology Acceptance Model)
Publisher : LPPM STMIK Pringsewu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56327/jurnaltam.v10i2.693

Abstract

SimPKL adalah sistem aplikasi online yang didesain untuk memfasilitasi mahasiswa yang akan melaksanakan kegiatan Praktik Kerja Lapangan (PKL). Sistem ini dibuat untuk mengorganisir seluruh aktifitas mahasiswa yang terkait dengan kegiatan PKL mulai dari awal proses perencanaan sampai dengan pelaporan PKL. Penelitian ini bertujuan mendeskripsikan persepsi mahasiswa terhadap sistem aplikasi simPKL pada implementasi kegiatan PKL. Sampel dalam penelitian ini adalah 115 mahasiswa nonkependidikan di FMIPA yang sedang dan telah melaksanakan PKL. Data dikumpulkan dengan menggunakan angket dan dianalisis menggunakan Technology Acceptance Model (TAM) dengan mengukur Perceived Ease of Use dan Perceived Usefulness. Hasil penelitian menunjukkan bahwa pengguna simPKL merasa bahwa sistem simPKL dapat membantu mereka dalam proses PKL, namun kemudahan dan kemanfaatannya belum dirasakan secara maksimal. Hal ini terlihat dari skor persepsi pengguna yang berada dalam kriteria sedang. Selanjutnya perlu dilakukan evaluasi terhadap penggunaan simPKL dan mengkaji kembali beberapa bagian sistem yang memuat alur proses mulai tahap persiapan sampai dengan pelaporan kegiatan agar dapat mendukung pelaksanaan kegiatan PKL lebih baik lagi.
A Data Mining Approach to Wage Inequality Analysis in Indonesia: A Clustering Study Using Fuzzy C-Means Harwanti, Nur Achmey Selgi; Hendikawati, Putriaji; Sanusi, Ratna Nur Mustika; Pratama, Alfian Adi
Unnes Journal of Mathematics Vol. 13 No. 2 (2024): Unnes Journal of Mathematics Volume 2, 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/ujm.v13i2.25755

Abstract

This study aims to cluster Indonesian provinces based on the average wage structure of workers across 17 economic sectors using the Fuzzy C-Means (FCM) method. The wage data underwent preprocessing steps including missing value imputation using the median, logarithmic transformation to reduce skewness, and Z-Score standardization to ensure uniform data scaling. The evaluation of the number of clusters and fuzziness values was conducted using the Silhouette coefficient and Fuzzy Partition Coefficient (FPC), with the best results achieved at three clusters and a fuzziness value of 1.3. Further analysis using Principal Component Analysis (PCA) provided visualization of the clusters, while radar charts illustrated wage characteristics by sector within each cluster. The clustering results reveal significant economic disparities among provinces: Cluster 1 consists of provinces with the highest wages dominated by high-value-added sectors such as mining and finance; Cluster 0 shows a balanced wage distribution reflecting a transitional economy; and Cluster 2 includes provinces with the lowest wages facing structural challenges. These findings offer a comprehensive overview of regional economic diversity in Indonesia and can serve as a basis for policy-making aimed at more equitable economic development.
A Systematic Literature Review of: Computational Thinking in Mathematics Classrooms Pramesti, Santika Lya Diah Pramesti; Mariani, Scolastika; Hendikawati, Putriaji; Wardono; Waluya, St Budi; Pujiastuti, Emi; Dewi, Heni Lilia
RANGE: Jurnal Pendidikan Matematika Vol. 7 No. 1 (2025): Range Juli 2025
Publisher : Pendidikan Matematika UNIMOR

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32938/jpm.v7i1.9440

Abstract

In today’s rapidly evolving digital era, the ability to think computationally is no longer confined to computer science it has become essential across disciplines, including mathematics. This study integrates computational thinking (CT) into mathematics learning by analyze its development, benefits, and implementation challenges. Computational thinking which includes abstraction, algorithms, decomposition, and pattern recognition, is considered a crucial component in improving students' mathematical learning. These insights are intended to inform educators, policymakers, and researchers seeking to align mathematics instruction with contemporary technological and pedagogical advancements. Utilizing a systemic literature review as a qualitative method, by 37 peer-reviewed articles published between 2019 and 2024 in the Scopus database were examined. Through qualitative thematic analysis, key insights were identified across cognitive and affective dimensions. The review suggests that CT may support students’ development in problem-solving, logical reasoning, and conceptual abstraction, while also contributing to affective aspects such as motivation, self-confidence, and self-regulated learning. However, several barriers hinder its effective implementation, including insufficient teacher training, limited infrastructure, and curricular constraints. The study highlights the necessity for targeted teacher training initiatives and institutional support to facilitate CT integration.
A Hypothetical Learning Trajectory Design for Social Arithmetic to Fostering Computational Thinking and Self-Regulated Learning Abilities Pramesti, Santika Lya Diah; Mariani, Scolastika; Hendikawati, Putriaji; Kartono, Kartono; Masrukan, Masrukan
EDUKASIA Jurnal Pendidikan dan Pembelajaran Vol. 6 No. 2 (2025)
Publisher : LP. Ma'arif Janggan Magetan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62775/edukasia.v6i2.1493

Abstract

This study aims to design a Hypothetical Learning Trajectory (HLT) on the topic of social arithmetic to address learning obstacles related to students’ computational thinking (CT) and self-regulated learning (SRL) abilities. Employing an Educational Design Research (EDR) approach, the study developed the Missouri Mathematics Open-Ended Problem-Based Learning (MiMOPBL) model supported by an e-module based on the Predict–Observe–Explain (POE) strategy. The HLT integrates CT and SRL by guiding students through prediction, observation, and explanation stages while solving open-ended contextual problems. Validation results confirmed that the instructional tools—including lesson plans, student worksheets, e-modules, CT and SRL instruments—are both valid and reliable. Content validity assessed using Aiken’s V showed values ranging from 0.80 to 0.98, while reliability testing using Cronbach’s Alpha indicated high internal consistency (SRL: α = 0.85; CT: α = 0.89; observation sheet: α = 0.88). These results indicate that the tools are suitable for use in mathematics classrooms. Although limited to the design phase and one topic, the study offers a structured, competency-based learning design that supports student engagement, problem-solving skills, and independent learning. Future research should explore the effectiveness of this learning design across various topics and student groups.
Algoritma K-Means dan Analisis Komponen Utama untuk Mengatasi Multikolinearitas pada Pengelompokan Kabupaten Tertinggal Aviliana, Firna; Hendikawati, Putriaji
JISKA (Jurnal Informatika Sunan Kalijaga) Vol. 10 No. 3 (2025): September 2025
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/jiska.2025.10.3.294-306

Abstract

Underdeveloped areas are regions that frequently face developmental challenges in various aspects such as infrastructure, education, and healthcare. Presidential Regulation Number 63 of 2020 designates 62 regencies in Indonesia as underdeveloped areas. This study categorizes the 62 underdeveloped regencies based on education and health indicators. The methods used are the k-means algorithm and principal component analysis due to multicollinearity in the data. MANOVA is conducted to determine the influence of the cluster results on the Human Development Index (HDI), Average Years of Schooling (AYS), Expected Years of Schooling (EYS), and Life Expectancy (LE). Due to multicollinearity in the education indicator data, principal component analysis was performed, resulting in three main components. The k-means analysis groups the 62 regencies into three clusters based on education indicators and two clusters based on health indicators. Further analysis using MANOVA shows the influence of the education and health clusters on HDI, AYS, EYS, and LE, indicated by statistical test results showing p-value < a(0.05). Thus, education and health indicators influence the categorization of underdeveloped areas.
PEMBELAJARAN BIG DATA DI PERGURUAN TINGGI: POTENSI MASA DEPAN, FAKTOR PENDUKUNG DAN PENGHAMBAT Hendikawati, Putriaji; Harwanti, Nur Achmey Selgi; Wardono, Wardono; Prabowo, Ardi; Zahra, Mega Dea; Saefurrochman, Wisatsana Roychan
JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) Vol 10, No 3 (2025)
Publisher : STKIP PGRI Tulungagung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29100/jipi.v10i3.7711

Abstract

Penelitian ini bertujuan untuk menyelidiki pemahaman mahasiswa terhadap pembelajaran Big Data, mengidentifikasi faktor-faktor yang mempengaruhi keterlibatan dan keberhasilan mahasiswa dalam pembelajaran Big Data, serta memberikan wawasan yang diperlukan bagi institusi pendidikan untuk meningkatkan kurikulum dan pen-galaman pembelajaran, serta mempersiapkan mahasiswa menghada-pi tantangan dan peluang di dunia profesional yang semakin bergan-tung pada data. Metode penelitian meliputi survei, analisis data per-sepsi mahasiswa, dan wawancara mendalam. Hasil penelitian menunjukkan bahwa mahasiswa memiliki pemahaman yang me-madai mengenai konsep Big Data, dengan rata-rata tingkat keakra-ban mencapai 3.6 pada skala 1 hingga 5. Responden menilai pent-ingnya pembelajaran Big Data dengan nilai rata-rata 4.3, menunjuk-kan bahwa pembelajaran ini sangat relevan dalam pendidikan tinggi dan dunia profesional. Faktor penghambat utama yang diidentifikasi meliputi kurangnya sumber daya finansial, keterbatasan akses teknologi dan infrastruktur, perubahan kurikulum, serta minimnya kolaborasi dengan industri. Faktor pendukung dari institusi, ketersediaan teknologi yang memadai, program kursus yang ter-struktur, dan kerjasama dengan industri menunjukkan dampak posi-tif terhadap pembelajaran Big Data. Pengalaman praktis, termasuk kontribusi dari praktisi industri, memperkaya pengalaman belajar mahasiswa. Sebanyak 50 dari 53 responden menunjukkan minat yang tinggi untuk mendalami Big Data lebih lanjut, menandakan potensi besar untuk pengembangan kurikulum. Penelitian ini merekomendasikan pembaruan kurikulum agar sesuai dengan perkembangan terbaru di industri, peningkatan pelatihan bagi dosen, serta penyediaan akses teknologi dan perangkat yang lebih baik.
Co-Authors 'Aina, Maula Qorri Abdurakhman Abdurakhman Adisgia, Devintha Rukmandani AGUSTINA, SELY Ahmad Dzulfikar Ambarwati, Ratna Amin Suyitno Anggriningrum, Dwi Prisita Arief Agoestanto Asriani, Elisa Desi Assidiq, Addinul Astuti, Raras Setya Auliya, Amara Sweetya Aviliana, Firna Bambang Eko Susilo Bambang Eko Susilo Bidayatul hidayah Budi Waluya David Mubarok, David Dewi, Heni Lilia Dwijanto Dwijanto, Dwijanto Edy Soedjoko Emi Pujiastuti Farkhan, Feri FAUSTINA, RIZA SILVIA Febrianto, Laeli Sidik Florentina Yuni Arini, Florentina Yuni Frazwanti, Yuni Hapsari, Desy Trya Harwanti, Nur Achmey Selgi hengky tri ikhsanto, hengky tri ikhsanto Hilda, Eufrasia Ismail, Abid Khoirul Isnaeni, Ari Isnaini Rosyida, Isnaini Isnarto Isnarto, Isnarto Juwita, Puspa Karomah, Yuliyanti Kartono, Kartono Khanifah Khanifah Khasanah, Uswatul Khunaeni, Sirilivia Kiswandi, Kiswandi Kristina Wijayanti Kurniana Bektiningsih Larasati, Enggar Niken Latifah, Nur Tsani Lestari, Pinta Dian Mashuri - Mashuri Mashuri Masrukan Masrukan Mohammad Asikin Much Aziz Muslim Muhammad Kharis Nafiul Anam, Nafiul Nino Adhi, Nuriana Rachmani Dewi Nitoviani, Nindy Dwi Niyamae, Ade Noorliza Nofiyah, Noni Nur Hidayati Nur Hidayati Nuriana Rachmani DN Nuriana Rachmani DN, Nuriana Rachmani Nurkaromah Dwidayati, Nurkaromah Nurlazuardini, Novia Nilam Nursiwi Nugraheni, Nursiwi Paradita, Evelyn Prabowo, Ardi Pramesti, Santika Lya Diah Pramesti Pratama, Alfian Adi Pratidina, Inung Pratiwi, Yuninda Diah Purbowo, Gallant Alim Purnawan, Dedy Rahayu Budhiati Veronika Rahayu Budhiyati Rahman, Erik Rina Dwi Setyawati Riza Arifudin Ruliana Ruliana, Ruliana Saefurrochman, Wisatsana Roychan Santika Lya Diah Pramesti Sanusi, Ratna Nur Mustika Saraswati, Andhina Sari, Ratna Novita Scolastika Mariani Setiani, Ida St. Budi Waluya Subanar . Sugiman Sugiman Sukestiyarno Sukestiyarno Sunarmi Sunarmi Supriyono Supriyono Suryani, Andika Resti Tarno Tarno Trimurtini, Trimurtini Ulya, Siti Faiqotul Veronica, Rahayu Budhiati Veronica, Rahayu Budhiati Wahyuningsih, Vebryana Walid Walid Walid, Walid Wardono Wardono Wardono Widayanti, Christina Zaenal Abidin Zaenuri Mastur Zahra, Mega Dea Zoraida, Desti Anisa