Bencana kebakaran hutan merupakan permasalahan besar bagi pemerintah provinsi Kalimantan Tengah. Langkah eksternal maupun internal telah dilakukan melalui kebijakan publik yang dibuat berupa hasil prediksi atau pemetaan kebakaran hutan dimasa akan datang. Dalam penelitian ini dilakukan pengembangan model untuk prediksi tren dan pemetaan tingkat kebakaran hutan dengan fokus penerapan hyperparameter terhadap kombinasi RNN di dua perangkat dan pengaturan rasio dataset berbeda. Dataset yang digunakan merupakan penggabungan dataset MODIS dan Merra2 sebagai end-to-end multivariate fitur dan target. Penggabungan dataset menggunakan asas interpolasi untuk mendukung kontinuitas kekosongan data. Untuk mencapai tujuan penelitian dilakukan eksperimental sebanyak 12 skenario terhadap 6 set pengaturan hyperparameter dengan evaluasi menggunakan performansi regresi MAE dan RMSE. Temuan penelitian menunjukan model kombinasi LSTM-GRU konsisten memperoleh rata-rata error MAE 2% dan RMSE 6% pada P1 dan P2 dengan nilai performa loss pembelajaran terbaiknya berada pada skenario 7, 10, 11 untuk pembagian kedua dataset dan skenario 8 di rasio dataset 70:30. Pengujian di perangkat berbeda juga tidak mempengaruhi penurunan error pada model terhadap penerapan hyperparameter kecuali lama runtime pembelajaran model. Hasil penelitian ini memberikan gambaran yang komprehensif terhadap pemilihan parameter terhadap kombinasi model RNN yang ideal berdasarkan pembagian rasio dataset serta memberikan pemahaman tentang penerapan hyperparameter pada perangkat berbeda.