Claim Missing Document
Check
Articles

Development of Derivative Understanding Task Instruments to Explore Student Commognition Rita Lefrida; Tatag Yuli Eko Siswono; Agung Lukito
Jurnal Pendidikan Matematika Vol 17, No 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jpm.17.3.20826.343-360

Abstract

Instruments are tool that used to collect research data. The instrument consists of two types, namely the main and supporting instruments. In this paper, we develop the supporting instruments which are used in qualitative research such as commognitive perspective. The instrument development aims to explore and reveal students' cognition in understanding derivative tasks that are valid and reliable. It means the instrument is needed in order to explore cognition and communication in an inseparable manner according to the theory used in this research. The two supporting instruments that developed in this study are the mathematical ability test (MAT) and the derivatives understanding task (TMT). Moreover, the developed MAT instrument is accompanied by source questions, grids and indicators. The MAT consists of 10 questions, and this was tested empirically in the category of valid and high reliability. Furthermore, TMT is developed as a reference for exploring student commognition. The TMT consists of 14 questions. The preparation and development of the instruments in this study are based on relevant theories and supported by empirical data. At the expert review step, validation is carried out in terms of content, construct and language by experts. Each step is tested for readability, then suggestions and comments are provided for improvement. The final results obtained show that the two supporting instruments (MAT and TMT) are feasible to use in exploring student commognition because these bring up keywords, visual mediators, endorsed narratives, and routines, as a commognition characterher.
Story Board untuk Menampilkan Aplikasi GeoGebra dengan Menggunakan Metode Design Thinking Jihan Fazlika; Fahrur Razi; Rita Lefrida
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 7 No 3 (2023): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 7 Nomor 3 Tahun 2023
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v7i3.2861

Abstract

Pembelajaran yang berpusat pada siswa akan menjadikan mereka berkembang dan mempunyai kemampuan berkomunikasi lebih baik. Apalagi diserta bekerja secara kolaboratif. Hal ini akan menimbulkan kreatif dan inovatif dalam dirinya yang sesuai dengan tantangan Abad kedua puluh satu. Sebuah pola pikir yang dapat memunculkan potensi kreatif dalam diri setiap orang adalah Design Thinking. Pada penelitian ini menggunakan perspektif teoritis dari design thinking dengan lima tahapan aktivitas pemecahan masalah yaitu emphatize, define, ideate, prototype, dan test. Strategi extremes dan lences digunakan pada pengambilan sampel penelitian dengan berdasarkan pada kriteria sampel ekstrim kanan dan sampel ekstrim kiri. Sampel pada penelitian yang terdiri dari 4 orang siswa SMAN Model Terpadu Madani. Peneliti melakukan observasi dan wawancara mendalam untuk mengidentifikasi masalah-masalah SMAN Model Terpadu Madani. Hasilnya peneliti membuat story board untuk menampilkan aplikasi GeoGebra pada pembelajaran matematika yang dapat mengubah paradigma pembelajaran tradisional menjadi lebih interaktif dan menarik bagi siswa, serta meningkatkan pemahaman konsep matematika mereka.
PEMAHAMAN KONSEP SISWA DALAM MENYELESAIKAN SOAL PERSAMAAN LOGARITMA DITINJAU DARI KEMAMPUAN MATEMATIKA Dyah Permata; Muh. Hasbi; Sudarman Bennu; Rita Lefrida
HISTOGRAM: Jurnal Pendidikan Matematika Vol. 7 No. 1 (2023): Histogram
Publisher : STKIP Andi Matappa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31100/histogram.v7i1.2557

Abstract

Pemahaman konsep siswa perlu untuk diprofilkan agar guru dapat mengetahui gambaran dari pemahaman konsep matematika yang dimiliki siswa. Penelitian ini bertujuan untuk memperoleh deskripsi atau gambaran mengenai pemahaman konsep siswa kelas X MAN 2 Kota Palu dalam menyelesaikan persamaan logaritma ditinjau dari kemampuan matematika. Jenis penelitian ini adalah penelitian deskriptif dengan pendekatan kualitatif. Data dikumpul melalui tugas tertulis dan wawancara. Hasil penelitian ini menunjukkan pemahaman konsep KT dalam menyatakan ulang konsep persamaan logaritma yaitu numerus dan basis yang memuat variabel dengan basis bisa tidak memuat variabel, mengidentifikasi contoh yaitu numerusnya yang memiliki variabel dan bukan contoh yaitu numerus tidak memuat variabel, mengklasifikasi objek-objek menurut sifat-sifat tertentu sesuai dengan konsep yaitu basis > 0 dan ≠ 1, sifat penjumlahan logaritma dan alog a = 1, serta menyelesaikannya secara algoritma; Pemahaman konsep KS dalam menyatakan ulang konsep yaitu basis dan numerusnya memuat variabel, mengidentifikasi contoh yaitu numerusnya memuat variabel dan bukan contoh yaitu numerus tidak memuat variabel, mengklasifikasi objek-objek menurut sifat-sifat tertentu sesuai dengan konsep yaitu alog a = 1 namun tidak menyelesaikannya secara algoritma; Pemahaman konsep KR dalam mengidentifikasi contoh persamaan logaritma yaitu numerus dan basis yang terdapat variabel.Students' understanding of concepts needs to be profiled so that teachers can know the picture of the understanding of mathematical concepts that students have. This study aims to obtain a description or description of the understanding of the concepts of class X MAN 2 Palu City students in solving logarithmic equations in terms of mathematical ability. This type of research is descriptive research with a qualitative approach. Data is collected through written assignments and interviews. The results of this study show the understanding of the KT concept in restating the concept of logarithmic equations, namely numerus and bases that contain variables on the basis that they cannot contain variables, identifying examples, namely numerus that has variables and not examples, namely numerus does not contain variables, classifying objects according to certain properties according to the concept, namely bases > 0 and ≠ 1, logarithmic summation properties and alog a = 1,  as well as solving it algorithmically; Understanding the concept of KS in restating the concept, namely the base and numerus contain variables, identifying examples, namely numerus contains variables and not examples, namely numerus does not contain variables, classifies objects according to certain properties according to the concept of alog a = 1 but does not solve it algorithmically; Understanding the concept of KR in identifying examples of logarithmic equations, namely numerus and the basis on which there are variables.
PROFIL PEMECAHAN MASALAH ARITMATIKA SOSIAL DITINJAU DARI GAYA KOGNITIF FIELD INDEPENDENT Ika Citra Pratiwi; Rita Lefrida; Alfisyahra Alfisyahra; Pathuddin Pathuddin
HISTOGRAM: Jurnal Pendidikan Matematika Vol. 8 No. 1 (2024): Jurnal Pendidikan Matematika
Publisher : STKIP Andi Matappa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31100/histogram.v8i1.3403

Abstract

Penelitian ini bertujuan untuk mendeskirpsikan profil pemecahan masalah siswa dalam menyelesaikan soal pada materi aritmatika sosial. Subjek penelitian ini terdiri dari 2 orang siswa yang diambil dari 8 siswa kelas VII A MTs Nida’ul Khairaat Pombewe pada semester ganjil 2023/2024. Pemilihan subjek menggunakan Group Embedded Figures Test (GEFT).  Hasil penelitian ini menunjukkan bahwa Profil pemecahan masalah siswa bergaya kognitif field independent memahami masalah dengan menuliskan hal yang diketahui dan ditanyakan dari soal secara lengkap dan terperinci, membuat rencana penyelesaian dengan tepat, melaksanakan rencana sesuai degan rencana yang telah dibuat sebelumnya  dan memeriksa kembali jawaban yang telah dikerjakan dengan cara meneliti atau mengecek ulang jawabannya dan memperoleh jawaban yang benar.
ANALYSIS OF UNDERSTANDING THE CONCEPT OF QUARTERS CLASS VIII STUDENTS ARE ABLE HIGHER MATHEMATICS Besse Nur Anisa; Alfisyahra; Pathuddin; Rita Lefrida
HISTOGRAM: Jurnal Pendidikan Matematika Vol. 8 No. 1 (2024): Jurnal Pendidikan Matematika
Publisher : STKIP Andi Matappa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31100/histogram.v8i1.3435

Abstract

Understanding students' concepts based on mathematical abilities will provide a framework for teachers to further train students' understanding abilities. This research aims to obtain an analysis of the conceptual understanding of students with high mathematical abilities in class VIII SMP Satu Atap Negeri 2 Toribulu in quadrilateral material. This type of research is qualitative research with a descriptive approach. Data was collected through written assignments and interviews. The results of this research show that the subject has high mathematical abilities, namely being able to restate concepts that have been learned by writing down the similarities and differences using his own language, being able to identify examples and non-examples by stating correct examples and incorrect examples of rhombus shapes, being able to classify objects. -objects according to their properties by explaining that the properties of a rhombus; all sides are the same length, both diagonals are axes of symmetry, both diagonals intersect each other perpendicularly, and the angles facing each other are the same size, and are able to apply the concept or algorithm for solving problems by understanding the meaning of the problem and being able to use a concept of rectangular area to solve problems on the question and explains the steps to solve the problem based on the procedures that have been taught, it's just that there was an error when operating the area of the room.
Mathematical Communication Skills of Female Students in Solving Derivative Problems Ratna Dwi Oktavia; Rita Lefrida; Alfisyahra Alfisyahra; Pathuddin Pathuddin
Prisma Sains : Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram Vol 12, No 3: July 2024
Publisher : IKIP Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/j-ps.v12i3.12439

Abstract

This study aimed to examine the mathematical communication skills of female students in solving derivative problems in the eleventh grade at SMA Negeri 1 Sigi. The research followed a qualitative approach with a descriptive design. The study sample consisted of three female students selected based on a questionnaire focusing on feminine gender traits. Data were collected through written tests, interviews, and direct observation of the subjects. The dependability and credibility techniques were used to ensure the quality of the research findings. Data analysis involved three stages: data condensation, data presentation, and drawing conclusions. This study contributes to the existing literature by addressing the gap in understanding the mathematical communication skills of students with feminine gender traits, specifically in the context of solving derivative problems. The uniqueness of this study lies in the use of a feminine questionnaire for subject selection and the integration of mathematical language with everyday language and physical gestures in the evaluation of mathematical ideas. The findings revealed that female students with feminine gender traits demonstrated proficiency in all indicators of mathematical communication skills, including: (1) the ability to communicate their mathematical thoughts coherently and clearly to their peers and teachers; (2) effective use of mathematical language, such as numbers, letters, symbols, charts, graphs, and logical connections, in conjunction with everyday language and physical gestures when presenting, solving, and evaluating mathematical ideas during interactions with others; and (3) the capacity to explain mathematical ideas, situations, or relationships in written form. These results suggest that approaches combining mathematical language with physical interaction and everyday language can enhance the effectiveness of mathematical communication. The findings of this research can be utilized as a foundation for developing more inclusive and adaptive teaching strategies that consider gender differences in mathematics education.
Concept Understanding Students on the Two-Variables Linear Equation System Material in Terms of Mathematics Ability Rahmadiani Rahmadiani; Alfisyahra Alfisyahra; Rita Lefrida; Pathuddin Pathuddin
Prisma Sains : Jurnal Pengkajian Ilmu dan Pembelajaran Matematika dan IPA IKIP Mataram Vol 12, No 1: January 2024
Publisher : IKIP Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/j-ps.v12i1.10532

Abstract

The purpose of this study was to describe the concept understanding ability of students in solving the problem of two-variable linear equation system. The method used is descriptive qualitative research. The subject of this research was 3 students taken from 26 students of class VIII SMPN 1 Balaesang. The results showed that the concept understanding of high mathematics ability students in restating concepts can restate concepts well using their own language, identify examples and non-examples and classify objects according to certain properties in accordance with the concept that can make mathematical modelling and determine equations and use the right solution steps according to the concept algorithmically. The concept understanding of medium ability students in restating concepts has been able to state concepts using their own sentences, identify examples and non-examples and are still lacking in classifying objects according to certain properties in accordance with the concept. The concept understanding of low ability students has not been able to achieve all indicators of concept understanding. Therefore, concept understanding is very important to be mastered by every student and the role of the teacher in facilitating the ability of each student.
Implementasi Model Pembelajaran Two Stay Two Stray untuk memperbaiki Komunikasi Matematika Siswa Kelas XII XII-2 SMAN Model Terpadu Madani Razi, Muhammad Fahrur; Sasongko, Luddy Bambang; Lefrida, Rita
Postulat : Jurnal Inovasi Pendidikan Matematika Vol 4 No 2 (2023): Desember 2023
Publisher : Universitas Muhammadiyah Gresik

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30587/postulat.v4i2.7385

Abstract

In learning students convey the results of their work is not always easy to accept. This is because their level of mathematical communication is not high. To improve their communication skills, a learning model that emphasizes communication aspects is needed, one of these models is two stay two stray. For this reason, through this study to improve students' mathematical communication skills, the two stay two stray learning model was applied to the limit material of trigonometric functions. This research was conducted on students of class XII-2 of Madani Integrated Model Senior High School in the 2022/2023 school year. This research is a collaborative classroom action research (PTK) which is carried out in 2 learning cycles. The results of the research in cycle 1 get the level of mathematical communication skills of student A is at level 1, student B is at level 2, student C is at level 3. Then revisions were made in cycle 2 learning to get the results of student A at level 2, student B at level 3 and student C at Level 3. From these results it can be concluded that learning mathematics by applying the two stay two stray type cooperative learning model can improve mathematical communication skills for students who have low and medium abilities.Keywords : Two stay two stray, Mathematical Communication
A Developmental Study of Junior High School Mathematics Instructional Media Guided from Humanity-Value of Learning Model (MPNK) to Prevent Juvenile Delinquency Murdiana, I Nyoman; Lefrida, Rita
JPP (Jurnal Pendidikan dan Pembelajaran) Vol 24, No 1 (2017)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um047v24i12017p020

Abstract

Abstract: The Research and Development study aimed to develop a instructional media for math lesson using valid, practical, and effective humanity-value teaching model to prevent juvenile delinquency. To achieve the objective, the prototypical study was conducted using 3 phase development, namely (1) early assessment phase or front-end analysis, (2) the development phase consisting of expert validation and tryout I, and (3) the evaluation phase through tryout II using a quasi experiment design with anacova data analysis. The result from the first year development (2015) was the instructional media for junior high school using a valid humanity-value teaching model to prevent various kinds of juvenile delinquency. The products developed from the current research were in the form of lesson plan, teacher’s book, student book, and student worksheets. The products were in the form of draft of the instructional set which was valid.Keywords: instructional media, junior high school, mathematics, MPNK modelAbstrak: Penelitian ini merupakan penelitian pengembangan untuk menghasilkan perangkat pembelajaran matematika SMP berpandu Model Pembelajaran Nilai Kemanusiaan (MPNK), yang valid, praktis, dan efekktif guna mencegah kenakalan remaja.Untuk mencapai tujuan tersebut, maka jenis penelitian yang digunakan adalah prototypical studies melalui tiga tahap pengembangan. Tiga tahap tersebut yakni: (1) fase hulu hilir, (2) fase pengembangan melalui kegiatan validasi oleh pakar dan kegiatan uji coba I; (3) fase penilaian melalui kegiatan uji coba II dengan rancangan “Quasi- Expriment” dan datanya dianalisis dengan Anacova. Hasil yang telah diperoleh untuk pengembangan tahun I (2015) adalah produk perangkat pembelajaran matematika SMP berpandu MPNK, yang valid dalam rangka mencegah berbagai bentuk kenakalan remaja. Produk yang telah diperoleh dari hasil penelitian ini berupa Rencana Pelaksanaan Pembelajaran (RPP), Buku Guru, Buku Siswa, dan Lembar Kerja Siswa. Produk tersebut berupa Draft Perangkat Pembelajaran yang telah memenuhi kualitas valid.Kata kunci: matematika, model MPNK, perangkat pembelajaran, SMP
ANALYSIS OF STUDENTS' ERRORS IN SOLVING PROBLEMS ON THE MATERIAL OF ROWS AND SERIES IN CLASS VIII MTS SYEKH LOKIYA TOWALE Nurhaliza, Sitti; Alfisyahra, Alfisyahra; Lefrida, Rita; Pathuddin, Pathuddin
Prima: Jurnal Pendidikan Matematika Vol 8, No 2 (2024): PRIMA : Jurnal Pendidikan Matematika
Publisher : FKIP Universitas Muhammadiyah Tangerang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31000/prima.v8i2.10825

Abstract

Penelitian ini bertujuan untuk mendeskripsikan jenis-jenis kesalahan yang dilakukan siswa kelas VIII MTs Syekh Lokiya Towale dalam menyelesaikan masalah matematika berdasarkan Analisis Kesalahan Newman . Jenis penelitian ini adalah penelitian kualitatif dengan pendekatan deskriptif. Teknik pengumpulan data dalam penelitian ini adalah tes tertulis dan wawancara berupa 2 soal esai dan pedoman wawancara. Teknik wawancara yang digunakan adalah semi terstruktur yang dilakukan terhadap siswa terpilih untuk memastikan jenis kesalahan yang dilakukan dalam menyelesaikan masalah. Subyek dalam penelitian ini dipilih berdasarkan perbedaan gender yaitu satu siswa laki-laki dan satu siswa perempuan dengan pertimbangan siswa yang paling banyak melakukan kesalahan, mampu berkomunikasi dengan baik dan rekomendasi dari guru matematika. Hasil penelitian ini menunjukkan bahwa kesalahan yang dilakukan subjek laki-laki (SL) adalah kesalahan pemahaman (comprehension error) , kesalahan keterampilan proses ( process skill error ) dan kesalahan penulisan jawaban akhir ( encoding error) . Kesalahan yang dilakukan subjek perempuan (SP) adalah kesalahan keterampilan proses ( process skill error) dan kesalahan penulisan jawaban akhir ( kesalahan coding) . 
Co-Authors Abd. Hamid Abdul Hamid ABDUL HAMID AGUNG LUKITO Agung Lukito Ain, Nur' Alfisyahra Alfisyahra Alfisyahra Alfisyahra Alfisyahra, Alfisyahra Alfisyhara, Alfisyhara Amelia, Kadek Devy Amelia, Reski Amelia, Risna Ana Puji Lestari Ana Puji Lestari Anggraini Anggraini Anggraini Anggraini Arivi, Maharani Agustina Arnisah, Sitti Arsyil Waritsman Askanita, Dsiya Auralia Asyita, Asyita Auliyah, Rifqah Awaludin Awaludin, Awaludin Badari, Siti Rahmatia Baharuddin Paloloang Bakri Bakri Bakri M Bakri M Bakri M Bakri Mallo Baso Amri Baso Amri Besse Nur Anisa Dahlan, Rahmawati Dahlia Dahlia Dasa Ismaimuza Desti Pujiarsih Dwi Warli Dyah Permata Elsa Febriasari Evie Awuy Fahrur Razi Faisal Faisal Fani, Sri Fazlika, Jihan Febriasari, Elsa Fitriyanti, Winda Gandung Sugita Haerani, Novianti Hajerina, Hajerina Hamsiana, Hamsiana Hasbi, Muh Hermin, Arwini Puspita Hikber Todongi Husna, Radhiatul I Made Sudarsana I Nyoman Murdiana I Nyoman Murdiana Ibni Hadjar Ika Citra Pratiwi Indriana Indriana, Indriana Islam, Fahrul Jaeng, Maxinus Jihan Fazlika Julian, Rofi S Kamaruddin, Kamarudin Kamarudin Kamarudin Kanarasi, Yabes Maxrobin Karindah, Elis Safira Karniman, Tegoeh S Karniman, Tegoeh S. Khasanah, Tri Nur Lainawa, Mohamad Ruslan Lembang, Ulvina Tangke M, Bakri Ma'abud, Yusril Y Mahdayani Mahdayani, Mahdayani Mansur, Meliani Marinus B. Tandiayuk Marinus B. Tandiayuk Marnita Martina Martina Maxinus Jaeng Maxinus Jaeng Mery Napitupulu Miranda, Dini Mirnawati Muin MUFIDAH Mufidah Mufidah Muh Hasbi Muh Ikbal Almahdali Muh. Hasbi Muh. Hasbi Muh. Hasbi Muh. Rizal Muhammad Fitrah Muhammad Fitrah, Muhammad Muin, Mirnawati Mustamin Idris MUSTAMIN IDRIS Mustapa, Dita Ningrum, Ing Diar Maswal Ningsih, Firnawati Adia Nisa, Ainun Nita Nita Nita Nita Nur Islamiah, Nur Nur Islamiyah Nur’aini, Jafar Nurhalizah Nurhalizah Nurhalizah, Nurhalizah Nurhayadi Nurhikma, Nurhikma NURUL AZIZAH Nurviani Alamanda Nur’aini Jafar Padang, Sery Londong Pala, Martavina Yustita Pathuddin Pathuddin, Pathuddi Pau, Rizki Amalia Sy Pujiarsih, Desti Purwanindina, Atila Maheswari Dewi Putri, Istifanah Maharani Rahmadiani Rahmadiani Rahmawati Dahlan Ratna Ratna Dwi Oktavia Razi, Muhammad Fahrur Reski Amelia Rezki Lola Yunita Rezky Hari Sentosa Rizal, Muh Rochmat Wijaya Rofi Julian S Rumba, Kevin Angryawan Rydwan Balo S.Pou, Zulkfiri Sabila B, Dini Nurul Sari, Septi Rahmita Sasongko, Luddy Bambang Selmi Selmi, Selmi Sentosa, Rezky Hari Sinta, Selviana Siti Hardiyanti Siti Hardiyanti Sitti Nurhaliza Sudarman Bennu Sudarsono Sukayasa Sutji Rochaminah Syamsiar Syamsiar, Syamsiar Tajuddin Tajudin Tajudin Tatag Yuli Eko Siswono Tatag Yuli Eko Siswono Tegoeh S. Karniman Tina Walanda, Richard Albert Warli, Dwi Welli Meinarni Wijaya, Rochmat Winda Fitriyanti Wirawan, Moh. Dhuhri Surya Wirdania, Wirdania Wisilayasa, I Gede Darma