Claim Missing Document
Check
Articles

Development of Derivative Understanding Task Instruments to Explore Student Commognition Rita Lefrida; Tatag Yuli Eko Siswono; Agung Lukito
Jurnal Pendidikan Matematika Vol 17, No 3 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jpm.17.3.20826.343-360

Abstract

Instruments are tool that used to collect research data. The instrument consists of two types, namely the main and supporting instruments. In this paper, we develop the supporting instruments which are used in qualitative research such as commognitive perspective. The instrument development aims to explore and reveal students' cognition in understanding derivative tasks that are valid and reliable. It means the instrument is needed in order to explore cognition and communication in an inseparable manner according to the theory used in this research. The two supporting instruments that developed in this study are the mathematical ability test (MAT) and the derivatives understanding task (TMT). Moreover, the developed MAT instrument is accompanied by source questions, grids and indicators. The MAT consists of 10 questions, and this was tested empirically in the category of valid and high reliability. Furthermore, TMT is developed as a reference for exploring student commognition. The TMT consists of 14 questions. The preparation and development of the instruments in this study are based on relevant theories and supported by empirical data. At the expert review step, validation is carried out in terms of content, construct and language by experts. Each step is tested for readability, then suggestions and comments are provided for improvement. The final results obtained show that the two supporting instruments (MAT and TMT) are feasible to use in exploring student commognition because these bring up keywords, visual mediators, endorsed narratives, and routines, as a commognition characterher.
MATHEMATICAL COMMUNICATION ABILITY OF CLASS X MIPA 1 MAN DONGGALA STUDENTS Nurhalizah Nurhalizah; Ibnu Hadjar; Rita Lefrida; Tegoeh S Karniman
JME (Journal of Mathematics Education) Vol 8, No 2 (2023): JME
Publisher : Universitas Sembilanbelas November Kolaka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31327/jme.v8i2.1979

Abstract

This type of research is a descriptive qualitative approach. The subjects in this research areClass X MIPA 1 MAN Donggala students consist of 4 people, each 2 male students and 2 female students who have FI cognitive style and FD cognitive style. Data on students' communication skills was obtained by written assignments and interviews. The results of the research show that the mathematical communication skills of students who have a Field Dependent cognitive style are less capable than men because they cannot achieve all the indicators. The student subject has a Field Dependent female cognitive style which is quite capable because it achieves one.The student subject has a Field Independent male cognitive style which is quite capable because it achieves two indicators.The student subject has a Field Independent female cognitive style that is capable of achieving all three indicators. So the conclusion obtained from this research is that students' mathematical communication abilities are generally said to be poor, this is because the majority of students have not met several indicators of the three indicators of students' mathematical communication abilities. This can be seen with only one student achieving all three indicators.
Story Board untuk Menampilkan Aplikasi GeoGebra dengan Menggunakan Metode Design Thinking Jihan Fazlika; Fahrur Razi; Rita Lefrida
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 7 No 3 (2023): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 7 Nomor 3 Tahun 2023
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v7i3.2861

Abstract

Pembelajaran yang berpusat pada siswa akan menjadikan mereka berkembang dan mempunyai kemampuan berkomunikasi lebih baik. Apalagi diserta bekerja secara kolaboratif. Hal ini akan menimbulkan kreatif dan inovatif dalam dirinya yang sesuai dengan tantangan Abad kedua puluh satu. Sebuah pola pikir yang dapat memunculkan potensi kreatif dalam diri setiap orang adalah Design Thinking. Pada penelitian ini menggunakan perspektif teoritis dari design thinking dengan lima tahapan aktivitas pemecahan masalah yaitu emphatize, define, ideate, prototype, dan test. Strategi extremes dan lences digunakan pada pengambilan sampel penelitian dengan berdasarkan pada kriteria sampel ekstrim kanan dan sampel ekstrim kiri. Sampel pada penelitian yang terdiri dari 4 orang siswa SMAN Model Terpadu Madani. Peneliti melakukan observasi dan wawancara mendalam untuk mengidentifikasi masalah-masalah SMAN Model Terpadu Madani. Hasilnya peneliti membuat story board untuk menampilkan aplikasi GeoGebra pada pembelajaran matematika yang dapat mengubah paradigma pembelajaran tradisional menjadi lebih interaktif dan menarik bagi siswa, serta meningkatkan pemahaman konsep matematika mereka.
STUDENT'S THINKING PROCESS IN SOLVING PROBLEMS IN TERM OF GUARDIAN AND IDEALIST PERSONALITY TYPES Nur Islamiah; Rita Lefrida; Nurhayadi Nurhayadi; Sutji Rochaminah
JME (Journal of Mathematics Education) Vol 9, No 1 (2024): JME
Publisher : Universitas Sembilanbelas November Kolaka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31327/jme.v9i1.2104

Abstract

This study aims to describe the thought process of students in solving problems in terms of personality types guardian and idealist in class XI SMA Negeri 5 Palu. This research is a qualitative descriptive research. The main instrument in this research is the researcher himself and the supporting instruments are The Keirsey Temperament Sorter (KTS), math problems, and interviews. The results of this study show that guardian students and idealist students are able to perform all stages of the thinking process in solving math problems, namely receiving information, processing information, and forming conclusions. Guardian and idealist students at the stage of receiving information read the problem well. Guardian students read enough once to understand the problem, while idealist students read repeatedly to understand the problem. At the information processing stage, guardian students can explain the problem solving plan while idealist students have difficulty explaining the solution plan. At the conclusion formation stage, guardian students consistently solve the problem according to what was previously planned. idealist students at the conclusion formation stage can solve the problem even though at the information processing stage they cannot explain the solution plan.
PROFILE OF UNDERSTANDING THE CONCEPT OF PYTHAGORAS THEOREM OF CLASS VIII STUDENTS IN TERMS OF COGNITIVE STYLE Nita Nita; Alfisyahra Alfisyahra; Rita Lefrida; Pathuddi Pathuddin
JME (Journal of Mathematics Education) Vol 9, No 1 (2024): JME
Publisher : Universitas Sembilanbelas November Kolaka

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31327/jme.v9i1.2126

Abstract

Students' concept understanding needs to be profiled so that teachers can find out the level of description and understanding of students' mathematical concepts. The purpose of this study was to describe how the understanding of students of SMP Negeri Model Integrated Madani Palu in understanding the concept of pythagorean theorem in terms of cognitive style Field Independent (FI) and Field Dependent (FD). This type of research is descriptive with qualitative approach. The subjects in this study were students of class VIII Kihajar Dewantra SMP Negeri Model Integrated Madani Palu consisting of one student cognitive style Field Independent and one student cognitive style Field Dependent selected based on the results of the GEFT test. The instruments used in this study were GEFT test, concept understanding questions and interview guidelines. The results showed that students with Field Independent cognitive style can solve problems well based on indicators of concept understanding compared to students with Gield Dependent cognitive style. Based on these conditions, in the learning process the teacher should pay attention to the learning model used in learning activities.
PEMAHAMAN KONSEP SISWA DALAM MENYELESAIKAN SOAL PERSAMAAN LOGARITMA DITINJAU DARI KEMAMPUAN MATEMATIKA Dyah Permata; Muh. Hasbi; Sudarman Bennu; Rita Lefrida
HISTOGRAM: Jurnal Pendidikan Matematika Vol. 7 No. 1 (2023): Histogram
Publisher : STKIP Andi Matappa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31100/histogram.v7i1.2557

Abstract

Pemahaman konsep siswa perlu untuk diprofilkan agar guru dapat mengetahui gambaran dari pemahaman konsep matematika yang dimiliki siswa. Penelitian ini bertujuan untuk memperoleh deskripsi atau gambaran mengenai pemahaman konsep siswa kelas X MAN 2 Kota Palu dalam menyelesaikan persamaan logaritma ditinjau dari kemampuan matematika. Jenis penelitian ini adalah penelitian deskriptif dengan pendekatan kualitatif. Data dikumpul melalui tugas tertulis dan wawancara. Hasil penelitian ini menunjukkan pemahaman konsep KT dalam menyatakan ulang konsep persamaan logaritma yaitu numerus dan basis yang memuat variabel dengan basis bisa tidak memuat variabel, mengidentifikasi contoh yaitu numerusnya yang memiliki variabel dan bukan contoh yaitu numerus tidak memuat variabel, mengklasifikasi objek-objek menurut sifat-sifat tertentu sesuai dengan konsep yaitu basis > 0 dan ≠ 1, sifat penjumlahan logaritma dan alog a = 1, serta menyelesaikannya secara algoritma; Pemahaman konsep KS dalam menyatakan ulang konsep yaitu basis dan numerusnya memuat variabel, mengidentifikasi contoh yaitu numerusnya memuat variabel dan bukan contoh yaitu numerus tidak memuat variabel, mengklasifikasi objek-objek menurut sifat-sifat tertentu sesuai dengan konsep yaitu alog a = 1 namun tidak menyelesaikannya secara algoritma; Pemahaman konsep KR dalam mengidentifikasi contoh persamaan logaritma yaitu numerus dan basis yang terdapat variabel.Students' understanding of concepts needs to be profiled so that teachers can know the picture of the understanding of mathematical concepts that students have. This study aims to obtain a description or description of the understanding of the concepts of class X MAN 2 Palu City students in solving logarithmic equations in terms of mathematical ability. This type of research is descriptive research with a qualitative approach. Data is collected through written assignments and interviews. The results of this study show the understanding of the KT concept in restating the concept of logarithmic equations, namely numerus and bases that contain variables on the basis that they cannot contain variables, identifying examples, namely numerus that has variables and not examples, namely numerus does not contain variables, classifying objects according to certain properties according to the concept, namely bases > 0 and ≠ 1, logarithmic summation properties and alog a = 1,  as well as solving it algorithmically; Understanding the concept of KS in restating the concept, namely the base and numerus contain variables, identifying examples, namely numerus contains variables and not examples, namely numerus does not contain variables, classifies objects according to certain properties according to the concept of alog a = 1 but does not solve it algorithmically; Understanding the concept of KR in identifying examples of logarithmic equations, namely numerus and the basis on which there are variables.
PROFIL PEMECAHAN MASALAH ARITMATIKA SOSIAL DITINJAU DARI GAYA KOGNITIF FIELD INDEPENDENT Ika Citra Pratiwi; Rita Lefrida; Alfisyahra Alfisyahra; Pathuddin Pathuddin
HISTOGRAM: Jurnal Pendidikan Matematika Vol. 8 No. 1 (2024): Jurnal Pendidikan Matematika
Publisher : STKIP Andi Matappa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31100/histogram.v8i1.3403

Abstract

Penelitian ini bertujuan untuk mendeskirpsikan profil pemecahan masalah siswa dalam menyelesaikan soal pada materi aritmatika sosial. Subjek penelitian ini terdiri dari 2 orang siswa yang diambil dari 8 siswa kelas VII A MTs Nida’ul Khairaat Pombewe pada semester ganjil 2023/2024. Pemilihan subjek menggunakan Group Embedded Figures Test (GEFT).  Hasil penelitian ini menunjukkan bahwa Profil pemecahan masalah siswa bergaya kognitif field independent memahami masalah dengan menuliskan hal yang diketahui dan ditanyakan dari soal secara lengkap dan terperinci, membuat rencana penyelesaian dengan tepat, melaksanakan rencana sesuai degan rencana yang telah dibuat sebelumnya  dan memeriksa kembali jawaban yang telah dikerjakan dengan cara meneliti atau mengecek ulang jawabannya dan memperoleh jawaban yang benar.
ANALYSIS OF UNDERSTANDING THE CONCEPT OF QUARTERS CLASS VIII STUDENTS ARE ABLE HIGHER MATHEMATICS Besse Nur Anisa; Alfisyahra; Pathuddin; Rita Lefrida
HISTOGRAM: Jurnal Pendidikan Matematika Vol. 8 No. 1 (2024): Jurnal Pendidikan Matematika
Publisher : STKIP Andi Matappa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31100/histogram.v8i1.3435

Abstract

Understanding students' concepts based on mathematical abilities will provide a framework for teachers to further train students' understanding abilities. This research aims to obtain an analysis of the conceptual understanding of students with high mathematical abilities in class VIII SMP Satu Atap Negeri 2 Toribulu in quadrilateral material. This type of research is qualitative research with a descriptive approach. Data was collected through written assignments and interviews. The results of this research show that the subject has high mathematical abilities, namely being able to restate concepts that have been learned by writing down the similarities and differences using his own language, being able to identify examples and non-examples by stating correct examples and incorrect examples of rhombus shapes, being able to classify objects. -objects according to their properties by explaining that the properties of a rhombus; all sides are the same length, both diagonals are axes of symmetry, both diagonals intersect each other perpendicularly, and the angles facing each other are the same size, and are able to apply the concept or algorithm for solving problems by understanding the meaning of the problem and being able to use a concept of rectangular area to solve problems on the question and explains the steps to solve the problem based on the procedures that have been taught, it's just that there was an error when operating the area of the room.
Analisis kesalahan siswa dalam menyelesaikan soal invers matriks pada kelas XI SMAN 4 Palu Muh Ikbal Almahdali; Pathuddin Pathuddin; Alfisyahra Alfisyahra; Rita Lefrida
Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah di Bidang Pendidikan Matematika Vol 10 No 1 (2024): Jurnal Math Educator Nusantara
Publisher : Program Studi Pendidikan Matematika, Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/jmen.v10i1.22258

Abstract

The aim of the research is to summarize the experiences of grade 11 students at SMA Negeri 4 Palu based on Newman's theory. This type of research is descriptive, using a qualitative approach. The research subjects were two students selected from 35 class XI students. The findings of this research are as follows: (1) Not a single subject experienced errors in reading the lesson material, because at that time every subject was considered able to read the lesson material correctly. (2) Not a single subject made a mistake in understanding, as seen in the interview phase. All research subjects were able to provide understandable and questionable information regarding the subject. (3) Each research subject carries out transformation error correction. This transformation error is characterized by the failure of a subset that reduces the problem of the mathematical model. (4) Process skills errors were made by each research subject. This is explained by the subject's understanding of the steps taken in answering the question, but most of it is caused by the subject's errors occurring in the transformation step and the subject being unable to solve mathematical problems accurately. (5) an error in writing the final answer (encoding error) was made by each research subject; This is differentiated by the fact that there are subjects who do not determine the final results of their learning and there are also subjects who fail to determine the final results due to errors in the previous stage.
Profil penyelesaian soal SPLDV berdasarkan teori apos ditinjau dari kemampuan matematika siswa Rezki Lola Yunita; Pathuddin Pathuddin; Alfisyahra Alfisyahra; Rita Lefrida
Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah di Bidang Pendidikan Matematika Vol 10 No 1 (2024): Jurnal Math Educator Nusantara
Publisher : Program Studi Pendidikan Matematika, Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/jmen.v10i1.22260

Abstract

This research was conducted to obtain descriptions of students in solving systems of two-variable linear equations (SPLDV) based on APOS theory in terms of mathematical ability. This type of research is descriptive with a qualitative approach. The subjects in this research were 3 students in class VIII B of SMPN 20 Palu in the odd semester 2023/2024 consisting of 1 student with high mathematics ability, 1 student with moderate mathematics ability, and 1 student with low mathematics ability. Data in the research were collected through written tests and interviews with subjects. The research results show that: (1) Students with high mathematical abilities can solve SPLDV questions by achieving all stages of APOS theory (action, process, object, and scheme); (2) Students with moderate mathematical abilities can solve SPLDV questions but have not been able to reach all stages of APOS theory, students with moderate mathematical abilities are only able to reach the APO stage (action, process and object); (3) Students with low mathematical abilities have not been able to solve SPLDV questions and are only able to reach the action stage at the APOS theory stage.
Co-Authors Abd. Hamid Abdul Hamid ABDUL HAMID Agung Lukito AGUNG LUKITO Alfisyahra Alfisyahra Alfisyahra Alfisyahra Alfisyahra Alfisyahra Alfisyahra, Alfisyahra Alfisyhara, Alfisyhara Amelia, Reski Amelia, Risna Ana Puji Lestari Ana Puji Lestari Anggraini Anggraini Anggraini Arivi, Maharani Agustina Arnisah, Sitti Asyita, Asyita Auliyah, Rifqah Awaludin Awaludin, Awaludin Baharuddin Paloloang Bakri Bakri Bakri M Bakri M Bakri M Bakri Mallo Baso Amri Baso Amri Besse Nur Anisa Dahlan, Rahmawati Dahlia Dahlia Dasa Ismaimuza Desti Pujiarsih Dini Miranda Dwi Warli Dyah Permata Elsa Febriasari Evie Awuy Fahrur Razi Faisal Faisal Fani, Sri Fazlika, Jihan Febriasari, Elsa Fitriyanti, Winda Gandung Sugita Haerani, Novianti Hasbi, Muh Hermin, Arwini Puspita Hikber Todongi Husna, Radhiatul I Made Sudarsana I Nyoman Murdiana I Nyoman Murdiana Ibni Hadjar Ibnu Hadjar Ika Citra Pratiwi Jaeng, Maxinus Jihan Fazlika Julian, Rofi S Kamaruddin, Kamarudin Kamarudin Kamarudin Kanarasi, Yabes Maxrobin Karindah, Elis Safira Kevin Angryawan Rumba Khasanah, Tri Nur Lembang, Ulvina Tangke M, Bakri Mahdayani Mahdayani, Mahdayani Marinus B. Tandiayuk Marinus B. Tandiayuk Marnita Martina Martina Maxinus Jaeng Meliani Mansur Mirnawati Muin Mohamad Ruslan Lainawa MUFIDAH Mufidah Mufidah Muh Hasbi Muh Ikbal Almahdali Muh. Hasbi Muh. Hasbi Muh. Rizal Muh. Rizal Muhammad Fitrah Muhammad Fitrah, Muhammad Muin, Mirnawati MUSTAMIN IDRIS Mustamin Idris Ningrum, Ing Diar Maswal Ningsih, Firnawati Adia Nisa, Ainun Nita Nita Nita Nita Nur Islamiah Nur Islamiyah Nur' Ain Nur’aini, Jafar Nurhalizah Nurhalizah Nurhalizah Nurhalizah Nurhayadi Nurhikma, Nurhikma Nurviani Alamanda Nur’aini Jafar Pathuddin Pujiarsih, Desti Purwanindina, Atila Maheswari Dewi Rahmadiani Rahmadiani Rahmawati Dahlan Ratna Ratna Dwi Oktavia Razi, Muhammad Fahrur Reski Amelia Rezki Lola Yunita Rezky Hari Sentosa Rizal, Muh Rizki Amalia Sy Pau Rochmat Wijaya Rofi Julian S Rydwan Balo Sabila B, Dini Nurul Sari, Septi Rahmita Sasongko, Luddy Bambang Selmi Selmi, Selmi Sentosa, Rezky Hari Sinta, Selviana Siti Hardiyanti Siti Hardiyanti Sitti Nurhaliza Sudarman Bennu Sudarsono Sukayasa Sutji Rochaminah Syamsiar Syamsiar, Syamsiar Tajudin Tajudin Tatag Yuli Eko Siswono Tatag Yuli Eko Siswono Tegoeh S Karniman Tegoeh S. Karniman Tina Warli, Dwi Welli Meinarni Wijaya, Rochmat Winda Fitriyanti Wirdania, Wirdania Wisilayasa, I Gede Darma