Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Embedded Systems, Security and Intelligent Systems

FEATURES SIMPLIFICATION USING CUBIC BEZIER PROPERTIES FOR GAIT RECOGNITION ON SMARTPHONE Kurnia Prima Putra; Marwan Ramdhany Edy; M. Syahid Nur Wahid; Muhammad Fajar B; Fadhlirrahman Baso
Journal of Embedded Systems, Security and Intelligent Systems Vol. 3 No. 1 (2022): Vol 3, No 1 (2022): May 2022
Publisher : Program Studi Teknik Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Smartphone is widely used around the world. It’s user authentication usually used pin code, pattern code, fingerprint and conventional login authentication. This kinds of authentication mechanism is intrusive because those mechanisms requires users to give exclusive interaction for user authentication during the process. One of authentication method which is non-intrusive during data collection is authentication by using gait. This mechanism classified as non-intrusive because this mechanism could gather biometric data without being noticed by the authentication subjects. Since it is non-intrusive, this mechanism allows re-authentications without bothering the authentication subjects. One of the recent gait recognition is using accelerometer on smartphone to measure and capture acceleration data on gait. This method extract step cycles in various length, map and interpolate the data into higher sample count, and then use each of mapped and interpolated data as feature using recognition. Regardless the classification or recognition method, using each mapped and interpolated data as features would result in high processing time during classification or recognition due to high feature count. In this research, we try to simplify the features of gait data with minimum data loss so it might give robust result with less latency by aligning cubic Bezier curve to step cycle data and extracting the Bezier properties.
Analisis Prediksi Tingkat Penyebaran COVID-19 di Sulawesi Selatan Menggunakan Teknik Data Mining Naive Bayes Muhammad Nur Yusri; Andi Akram Nur Risal; Muhammad Fajar B; Dewi Fatmarani Surianto; Fhatiah Adiba
Journal of Embedded Systems, Security and Intelligent Systems Vol. 3 No. 2 (2022): Vol 3, No 2 (2022): November 2022
Publisher : Program Studi Teknik Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pandemi atau wabah virus corona atau biasa disebut juga dengan COVID-19 yang bermula dari Wuhan, Provinsi Hubei, China, terus menyebar ke berbagai negara, termasuk Indonesia. Jumlah kasus positif COVID-19 terus meningkat tiap harinya secara signifikan dan menyebar secara cepat ke berbagai provinsi di Indonesia, termasuk di provinsi Sulawesi Selatan. Hingga saat ini, telah tercatat kasus positif corona di Sulawesi Selatan sebanyak 18.683 dan 470 orang meninggal dunia. Peningkatan kasus yang signifikan ini, mengakibatkan pembacaan data terkait kasus positif COVID-19 di Sulawesi Selatan dinilai kurang akurat. Oleh karena itu, penelitian ini dilakukan sebagai langkah antisipasi terhadap pandemi COVID-19 dengan memprediksi tingkat penyebaran COVID-19 terutama di Sulawesi Selatan agar mendapatkan keakurasian data yang lebih baik. Metode penelitian yang di terapkan pada penelitian ini ialah analisis masalah dan studi literatur, mengumpulkan data dan implementasi.