Claim Missing Document
Check
Articles

The deep convolutional networks for the classification of multi-class arrhythmia Akbar, Muhamad; Nurmaini, Siti; Partan, Radiyati Umi
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.6102

Abstract

An arrhythmia is an irregular heartbeat. Many researchers in the AI field have carried out the automatic classification of arrhythmias, and the issue that has been widely discussed is imbalanced data. A popular technique for overcoming this problem is the synthetic minority oversampling technique (SMOTE) technique. In this paper, the author adds some sampling of data obtained from other datasets into the primary dataset. In this case, the main dataset is the Massachusetts Institute of Technology–Beth Israel Hospital (MIT-BIH) arrhythmia database and an additional dataset from the MIT-BIH supraventricular arrhythmia database. The classification process is carried out with one-dimensional convolutional neural network model (1D-CNN) to perform multiclass and subject-class advancement of medical instrumentation (AAMII) classifications. The results obtained from this study are an accuracy of 99.10% for multiclass and 99.25% for subject-class.
Deteksi Struktur Jantung pada anak menggunakan CNN Arsitektur YOLO versi 5 Pratama, Jimiria; Nurmaini, Siti; Fachrurrozi, Muhammad
JUPITER (Jurnal Penelitian Ilmu dan Teknologi Komputer) Vol 16 No 2 (2024): Jurnal Penelitian Ilmu dan Teknologi Komputer (JUPITER)
Publisher : Teknik Komputer Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281/zenodo.13762983

Abstract

 A major challenge in the medical field is detecting heart structures in children, which requires a high level of time and accuracy. To address this issue, the You Only Look Once version 5 (YOLO v5) method is employed to identify children's heart structures using a convolutional neural network (CNN). YOLO v5s, YOLO v5n, and YOLO v5x are three versions tested to identify children's heart structures. Standard evaluation metrics such as precision, recall, F1 score, mean average precision, and IoU threshold 0.5 (mAP_0.5) are used to assess the model's performance. Experimental results indicate that YOLO v5s demonstrates the best performance in detecting children's heart structures with high detection rates and accuracy. This model can effectively detect heart structures in various image positions and conditions, suggesting potential for more accurate and effective diagnostic use in identifying heart diseases in children. The development of heart structure detection models is highly relevant in the medical field. The deep learning model using YOLO v5s offers remarkable capabilities in various visual applications. This model can be an efficient and reliable solution in various fields, providing reliable and accurate performance to streamline data analysis processes and enhance work efficiency.  Keywords—Detection, Pediatric Cardiac Structures, Convolutional Neural Network, YOLO v5
TeleOTIVA: Advanced AI-Powered Automated Screening System for Early Detection of Precancerous Lesions Rachmamtullah, Muhammad Naufal; Nurmaini, Siti; Agustiansyah, Patiyus; Sanif, Rizal; Sastradinata, Irawan; Arum, Akhiar Wista; Firdaus, Firdaus; Darmawahyuni, Annisa; Tutuko, Bambang; Sapitri, Ade Iriani; Islami, Anggun
Computer Engineering and Applications Journal Vol 14 No 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v14i1.1197

Abstract

In 2023, the Indonesian Ministry of Health launched the Rencana Aksi Nasional (RAN) to enhance the detection and management of cervical cancer in Indonesia. One of the main pillars in this movement is the implementation of early screening for precancerous lesions aimed at identifying and treating these lesions before they develop into cervical cancer. This effort includes improving public access to healthcare services, providing education and awareness about the importance of early detection, and utilizing the latest technology in screening procedures. It is hoped that, through these targeted and effective interventions, the incidence of cervical cancer can be significantly reduced. This research aims to facilitate the early detection screening process for cervical precancerous lesions, particularly in difficult areas for medical experts to reach. This study also seeks to assist obstetricians and gynecologists in detecting precancerous lesions automatically, quickly, and accurately. By developing an advanced technology-based screening system, it is hoped that early detection of precancerous lesions can be carried out more efficiently, thereby increasing the chances of timely treatment and reducing the incidence of cervical cancer across various regions in Indonesia. This system is designed to provide reliable and user-friendly diagnostic support as it is developed on a mobile platform that can be accessed anytime and anywhere. This research developed a system for early screening called Tele-OTIVA. The Tele-OTIVA application system is an advanced platform that uses artificial intelligence (AI) based approaches to provide optimal services in early detection of precancerous lesions. This application is designed for mobile, allowing users to access and use its advanced features anytime and anywhere. With the integration of AI technology, Tele-OTIVA can detect and analyze cervical precancerous lesions accurately and quickly to provide accurate and efficient screening results. The Tele-OTIVA application system is capable of providing satisfactory detection results. The performance of the proposed model achieves accuracy, sensitivity, and specificity levels above 90%. With this high performance, Tele-OTIVA ensures that the detection of precancerous lesions is carried out with high reliability and precision, instilling greater confidence in healthcare professionals and users during the screening and diagnosis process. The implementation of our application model offers numerous advantages over traditional methods. It significantly enhances efficiency by automating processes, reduces human error through rigorous error-checking mechanisms, and accelerates the processing of large datasets. These improvements streamline operations and ensure more reliable and rapid data analysis.
Analyzing Co-Authorship Networks in Indonesian PTN-BH Institution Through Social Network Analysis Firdaus, Firdaus; Nurmaini, Siti; Darmawahyuni, Annisa; Rachmatullah, Muhammad Naufal; Raflesia, Sarifah Putri; Lestarini, Dinda
Computer Engineering and Applications Journal Vol 14 No 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v14i1.1265

Abstract

This study involved an examination of bibliographic information from Indonesia. Our approach centered on utilizing social network analysis to explore the co-authorship relationships among Indonesian authors, focused on the co-authorship network within the context of authors affiliated with Indonesian state universities known as "PTN-BH," which specialize in higher education and legal studies. To conduct our analysis, we gathered publication data from the Scopus database, spanning a time frame from 1948 to 2020. The primary methodology entailed constructing a graph composed of nodes and edges, representing the co-authorship connections among these authors. By employing the Louvain method, we were able to identify prominent communities within this graph. We carried out a comprehensive analysis at both macro and micro levels, involving measurement techniques tailored to these perspectives. Through this approach, we revealed and examined the collaboration patterns among authors associated with PTN-BH institutions, as illuminated by the co-authorship network analysis.
Predicting Free Flap Viability: Integrating Lactate and Glucose Measurements with Artificial Intelligence Muzakkie, Mufida; Murti, Krisna; Nurmaini, Siti; Soedjana, Hardi Siswo
Jurnal Plastik Rekonstruksi Vol. 12 No. 1 (2025): (2025): Jurnal Plastik Rekonstruksi
Publisher : The Lingkar Studi Bedah Plastik Foundation and is affiliated with the Department of Plastic Surgery, Faculty of Medicine, Universitas Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14228/jprjournal.v12i1.388

Abstract

Introduction: In reconstructive surgery, free flaps are a superior method for resurfacing defects. While free flap viability is typically monitored by subjective clinical examination, lactate and glucose levels in free flaps, which can affect tissue metabolism during ischaemia and reperfusion, can help predict viability. This study aims to review previous research and provide a theoretical basis for using artificial intelligence in lactate and glucose measurement as a means of assessing flap viability.Method: The primary databases used to retrieve the key medical literature presented in this study were book references and Google Scholar, PubMed and Science Direct, using search terms related to the topic. Only articles written in English and published less than ten years ago were included.Results: Lactate levels detect perfusion impairment earlier than clinical signs or other biochemical markers while glucose monitoring can indicate underlying metabolic dysregulation or physiological stress, helps early detection of complications. Combining lactate and glucose measurements enhances diagnostic accuracy and allows for timely interventions for flap viability. Studies confirm this dual monitoring is a practical, unbiased, and has the potential to be developed into an artificial intelligence tool to improve patient outcomes.Conclusion: Lactate and glucose measurements in free flap monitoring have distinct benefits. Lactate detects ischaemia and reflects tissue metabolism, while glucose monitors energy metabolism and systemic health. Combining these leading to improved flap survival rates. With accessible tools, this approach improves patient care and outcomes in reconstructive surgery.
Analyzing Co-Authorship Networks in Indonesian PTN-BH Institution Through Social Network Analysis Firdaus, Firdaus; Nurmaini, Siti; Kurniawan, Anggy Tyas; Darmawahyuni, Annisa; Naufal, Muhammad; Raflesia, Sarifah Putri; Lestarini, Dinda
Computer Engineering and Applications Journal Vol 14 No 1 (2025)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1167.933 KB) | DOI: 10.18495/comengapp.v14i1.300

Abstract

This study involved an examination of bibliographic information from Indonesia. Our approach centered on utilizing social network analysis to explore the co-authorship relationships among Indonesian authors, focused on the co-authorship network within the context of authors affiliated with Indonesian state universities known as "PTN-BH," which specialize in higher education and legal studies. To conduct our analysis, we gathered publication data from the Scopus database, spanning a time frame from 1948 to 2020. The primary methodology entailed constructing a graph composed of nodes and edges, representing the co-authorship connections among these authors. By employing the Louvain method, we were able to identify prominent communities within this graph. We carried out a comprehensive analysis at both macro and micro levels, involving measurement techniques tailored to these perspectives. Through this approach, we revealed and examined the collaboration patterns among authors associated with PTN-BH institutions, as illuminated by the co-authorship network analysis.
Deep learning with Bayesian Hyperparameter Optimization for Precise Electrocardiogram Signals Delineation Darmawahyuni, Annisa; Sari, Winda Kurnia; Afifah, Nurul; Siti Nurmaini; Jordan Marcelino; Rendy Isdwanta
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 2 (2025): April 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i2.6171

Abstract

Electrocardiography (ECG) serves as an essential risk-stratification tool to observe further treatment for cardiac abnormalities. The cardiac abnormalities are indicated by the intervals and amplitude locations in the ECG waveform. ECG delineation plays a crucial role in identifying the critical points necessary for observing cardiac abnormalities based on the characteristics and features of the waveform. In this study, we propose a deep learning approach combined with Bayesian Hyperparameter Optimization (BHO) for hyperparameter tuning to delineate the ECG signal. BHO is an optimization method utilized to determine the optimal values of an objective function. BHO allows for efficient and faster parameter search compared to conventional tuning methods, such as grid search. This method focuses on the most promising search areas in the parameter space, iteratively builds a probability model of the objective function, and then uses that model to select new points to test. The used hyperparameters of BHO contain learning rate, batch size, epoch, and total of long short-term memory layers. The study resulted in the development of 40 models, with the best model achieving a 99.285 accuracy, 94.5% sensitivity, 99.6% specificity, and 94.05% precision. The ECG delineation-based deep learning with BHO shows its excellence for localization and position of the onset, peak, and offset of ECG waveforms. The proposed model can be applied in medical applications for ECG delineation.
Comparison of CNN Architectures for Pre-Cancerous Cervical Lesion Classification Based on Colposopy Images Using IARC and AnnoCerv Datasets Sigit Prasetyo Noprianto; Siti Nurmaini; Dian Palupi Rini
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 2 (2025): MEY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i2.2361

Abstract

Cervical cancer represents a significant public health issue affecting women worldwide, and identifying the severity of lesions early on is crucial to selecting the right treatment. This research investigates and compares the effectiveness of various Convolutional Neural Network (CNN) models in classifying colposcopic images according to the severity of cervical lesions. The dataset used was obtained from the International Agency for Research on Cancer (IARC) and AnnoCerv, consisting of 452 colposcopy images categorized into four classes: Normal, CIN 1, CIN 2, and CIN 3. Five CNN architectures were evaluated: MobileNetV2, InceptionV3, Xception, VGG16, and DenseNet121. Experiments were conducted using default hyperparameters: batch size of 32, learning rate of 0.001, and 100 epochs. The results showed that MobileNetV2 achieved the highest accuracy at 67%, followed by DenseNet121 (60%), Xception (60%), InceptionV3 (55%), and VGG16 (42%). Based on these findings, MobileNetV2 is the most optimal model for classifying colposcopy images in this study. However, the study is limited by class imbalance and dataset size, which may affect model generalizability. Future work may explore ensemble learning techniques and larger, more diverse datasets for improved accuracy.
Robotics Current Issues and Trends Nurmaini, Siti
Computer Engineering and Applications Journal (ComEngApp) Vol. 2 No. 1 (2013)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The ongoing research and development work in the field of robotics have resulted in so many new technological trends. There are revolution which are being achieved with the use of latest technology in robotics, giving birth to new possibilities for automating tasks and enriching human lives for better. One can easily witness the presence of robotics in every sphere of life from industrial robots, service robots to personal robots. It other words, robots have become a part of our world to meet new demands of a new society.DOI: 10.18495/comengapp.21.117120
Multiclass Segmentation of Pulmonary Diseases using Convolutional Neural Network Arnaldo, Muhammad; Nurmaini, Siti; Satria, Hadipurnawan; Rachmatullah, Muhammad Naufal
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 1 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pulmonary disease has affected tens of millions of people in the world. This disease has also become the cause of death of millions of its sufferers every year. In addition, lung disease has also become the cause of other respiratory complications, which also causes the death of the sufferer. The diagnosis of pulmonary diseases through medical imaging is a significant challenge in computer vision and medical image processing. The difficulty is due to the wide variety in infected areas' shape, dimension, and location. Another challenge is to differentiate one lung disease from the other. Discriminating pulmonary diseases is a notable concern in the diagnosis of pulmonary disease. We have adopted the deep learning convolutional neural network in this study to address these challenges. Seven models were constructed using the Mask Region-based Convolutional Neural Network (Mask-RCNN) architecture to detect and segment infected areas within the lung region from CT scan imagery. The evaluation results show that the best model obtained scores of 91.98%, 85.25%, and 93.75% for DSC, MIoU, and mAP, respectively. The segmentation results are then visualized.
Co-Authors A. Darmawahyuni A. I. Sapitri Ade Iriani Sapitri Ade Iriani Sapitri Ade Iriani Sapitri Ade Silvia Ade Silvia Ade Silvia Handayani Aditya Aditya Aditya, Aditya Agung Juli Anda Agus Triadi Agus Triadi Agus Triadi Ahmad Zarkasi Ahmad Zarkasi Ahmad Zarkasi Ahmad Zarkasih Akhiar Wista Arum Andre Herviant Juliano Anggun Islami Anggun Islami Annisa Darmawahyuni Ardy Hidayat Arief Cahyo Utomo Armansyah, Risky Arnaldo, Muhammad Arum, Akhiar Wista Aulia Rahman Thoharsin B. Tutuko Bambang Tutuko Bambang Tutuko Bayu Wijaya Putra Benedictus Wicaksono Widodo Bhakti Yudho Suprapto Bhakti Yudho Suprapto Bhakti Yudho Suprapto Cindy Kesty Darmawahyuni, Annisa Darmawahyuni, Annisa Deris Stiawan Dewi, Kemala Dewi, Tresna Dian Palupi Rini Dian Palupi Rini Dian Palupi Rini Dimas Budianto Dinda Lestarini Dodo Zaenal Abidin Dwi Mei Rita Sari Ekawati Prihatini Erliza Yuniarti Fachrudin Abdau Fahreza, Irvan Falah Yuridho Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus Firdaus, Firdaus Firsandaya Malik, Reza Ganesha Ogi GITA FADILA FITRIANA Hadipurnawan Satria Hanif Habibie Supriansyah Huda Ubaya Huda Ubaya Huda Ubaya Husnawati Husnawati Husnawati Husnawati Husnawati Husni, Nyayu Latifah Husni, Nyayu Latifah Irfannuddin Irfannuddin Irsyadi Yani Irvan Fahreza Iryadi Yani Iryadi Yani, Iryadi Isdwanta, Rendy Islami, Anggun Jasmir Jasmir Jasmir Jasmir Jordan Marcelino Kemala Dewi Khairunnisa, Cholidah Zuhroh Krisna Murti Kurniawan, Anggy Tias Kurniawan, Anggy Tyas Legiran Legiran M. Hashim, Siti Zaiton M. N. Rachmatullah M. Naufal Rachmatullah Maharani, Masayu Nadila Marcelino, Jordan Masayu Nadila Maharani Mira Afrina Muhamad Akbar Muhammad Afif Muhammad Anshori Muhammad Arnaldo Muhammad Fachrurrozi Muhammad Fachrurrozi Muhammad Irham Rizki Fauzi Muhammad Naufal Rachmatullah Muhammad Naufal, Muhammad Muhammad Roriz Muhammad Taufik Roseno, Muhammad Taufik Muzakkie, Mufida Nadia Ayu Oktabella, nadia ayu oktabella Novi Yusliani Nurqolbiah, Fatihani Nuswil Bernolian Nuswil Bernolian Nyayu Latifah Husni Nyayu Latifah Husni, Nyayu Latifah Oky Budiyarti Osvari Arsalan Passa, Rahma Satila Patiyus Agustiansyah PATIYUS AGUSTIANSYAH, PATIYUS Pola Risma PP Aditya, PP, Aditya, PP Pratama, Jimiria Putri Mirani Rachmamtullah, Muhammad Naufal Radiyati Umi Partan Radiyati Umi Partan Radiyati Umi Partan Radiyati Umi Partan, Radiyati Umi Rahma Satila Passa Rendy Isdwanta Renny Amalia Pratiwi Reza Firsandaya Malik Reza Firsandaya Malik Ria Nova Ricy Firnando Ricy Firnando Ricy Firnando Rizal Sanif Rizki Kurniati Rossi Passarella Sahat Pangidoan Samsuryadi Samsuryadi Saparudin Saparudin Saparudin, Saparudin Sapitri, Ade Iriani Saputra, Tommy Sari, Dwi Mei Rita Sarifah Putri Raflesia Sarifah Putri Raflesia, Sarifah Putri Sastradinata, Irawan Sigit Prasetyo Noprianto Siti Zaiton Siti Zaiton M. Hashim Soedjana, Hardi Siswo Sri Desy Siswanti Suci Dwi Lestari Suci Dwi Lestari Suhandono, Nugroho Sukemi Sukemi Sukemi Sukemi Sukemi Sukman Tulus Putra Sutarno Sutarno Syamsul Arifin Syaputra, Hadi Tio Artha Nugraha Tresna Dewi Tresna Dewi Tri Undari Triadi, Agus Triadi, Agus Varindo Ockta Keneddi Putra Velia Yuliza Winda Kurnia Sari Wisnu Adi Putra Yani, Iryadi Yesi Novaria Kunang Yurni Oktarina Zaqqi Yamani