Claim Missing Document
Check
Articles

Shellcode Classification with Machine Learning Based on Binary Classification Semendawai, Jaka Naufal; Stiawan, Deris; Pahendra, Iwan
Jurnal Indonesia Sosial Teknologi Vol. 6 No. 2 (2025): Jurnal Indonesia Sosial Teknologi
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/jist.v6i2.3233

Abstract

The Internet can link one person to another using their respective devices. The internet itself has both positive and negative impacts. One example of the internet's negative impact is malware that can disrupt or even kill a device or its users; that is why cyber security is required. Many methods can be used to prevent or detect malware. One of the efforts is to use machine learning techniques. The training and testing dataset for the experiments is derived from the UNSW_NB15 dataset. K-Nearest Neighbour (KNN), Decision Tree, and Naïve Bayes classifiers are implemented to classify whether a record in the testing data is Shellcode or non-Shellcode attack. The KNN, Decision Tree, and Naïve Bayes classifiers achieve accuracy levels of 96.82%, 97.08%, and 63.43%, respectively. The results of this research are expected to provide insight into the use of machine learning in detecting or classifying malware or other types of cyber attacks.
IoT Security: Botnet Detection Using Self-Organizing Feature Map and Machine Learning Susanto; Stiawan, Deris; Santoso, Budi; Sidabutar, Alex Onesimus; Arifin, M. Agus Syamsul; Idris, Mohd Yazid; Budiarto, Rahmat
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 6 (2024): December 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i6.5871

Abstract

The rapid advancement of Internet of Things (IoT) technology has created potential for progress in various aspects of life. However, the increasing number of IoT devices also raises the risk of cyberattacks, particularly IoT botnets often exploited by attackers. This is largely due to the limitations of IoT devices, such as constraints in capacity, power, and memory, necessitating an efficient detection system. This study aims to develop a resource-efficient botnet detection system by using the Self-Organizing Feature Map (SOFM) dimensionality reduction method in combination with machine learning algorithms. The proposed method includes a feature engineering process using SOFM to address high-dimensional data, followed by classification with various machine learning algorithms. The experiments evaluate performance based on accuracy, sensitivity, specificity, False Positive Rate (FPR), and False Negative Rate (FNR). Results show that the Decision Tree algorithm achieved the highest accuracy rate of 97.24%, with a sensitivity of 0.9523, specificity of 0.9932, and a fast execution time of 100.66 seconds. The use of SOFM successfully reduced memory consumption from 3.08 GB to 923MB. Experimental results indicate that this approach is effective for enhancing IoT security in resource-constrained devices.
Performance Comparison of Feature Face Detection Algorithm on The Embedded Platform Zarkasi, Ahmad; Nurmaini, Siti; Stiawan, Deris; Suprapto, Bhakti Yudho; Ubaya, Huda; Kurniati, Rizki
Computer Engineering and Applications Journal (ComEngApp) Vol. 11 No. 2 (2022)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The intensity of light will greatly affect every process carried out in image processing, especially facial images. It is important to analyze how the performance of each face detection method when tested at several lighting levels. In face detection, various methods can be used and have been tested. The FLP method automates the identification of the location of facial points. The Fisherface method reduces the dimensions obtained from PCA calculations. The LBPH method converts the texture of a face image into a binary value, while the WNNs method uses RAM to process image data, using the WiSARD architecture. This study proposes a technique for testing the effect of light on the performance of face detection methods, on an embedded platform. The highest accuracy was achieved by the LBPH and WNNs methods with an accuracy value of 98% at a lighting level of 400 lx. Meanwhile, at the lowest lighting level of 175 lx, all methods have a fairly good level of accuracy, which is between 75% to 83%.
Needs Analysis for the Development of Interactive Infographic Media Based on Discovery Learning on Renewable Energy Topics in Elementary Education Marita, Raini; Stiawan, Deris; Raharjo, Makmum
Journal of Innovation and Research in Primary Education Vol. 4 No. 3 (2025)
Publisher : Papanda Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56916/jirpe.v4i3.1501

Abstract

The low level of students’ understanding in learning Natural Sciences, particularly on renewable energy topics, in elementary schools is partly due to the lack of interactive learning media that align with children's learning characteristics. This study aims to analyze the needs of both teachers and students for the development of interactive infographic media grounded in the discovery learning approach. A quantitative descriptive method was employed, using closed-ended questionnaires as the primary data collection instrument. The respondents consisted of 30 students and six classroom teachers from an elementary school in Musi Banyuasin Regency. The questionnaire covered pedagogical, technical, cognitive, aesthetic, and evaluation aspects. The findings revealed that the majority of students struggled to comprehend renewable energy concepts in the absence of visual media. Furthermore, 90% of students expressed a preference for learning materials incorporating images, videos, and animations. All teacher respondents emphasized the need for media that supports active and visual learning tailored to the developmental characteristics of elementary students. These findings underscore the urgent need to develop interactive infographic media based on discovery learning to enhance students’ conceptual understanding. Practically, the results serve as a foundation for designing learning tools that are engaging, age-appropriate, and capable of fostering independent exploration in science education at the elementary level.
Shellcode classification analysis with binary classification-based machine learning Semendawai, Jaka Naufal; Stiawan, Deris; Anto Saputra, Iwan Pahendra; Shenify, Mohamed; Budiarto, Rahmat
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 3: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i3.pp923-932

Abstract

The internet enables people to connect through their devices. While it offers numerous benefits, it also has adverse effects. A prime example is malware, which can damage or even destroy a device or harm its users, highlighting the importance of cyber security. Various methods can be employed to prevent or detect malware, including machine learning techniques. The experiments are based on training and testing data from the UNSW_NB15 dataset. K-nearest neighbor (KNN), decision tree, and Naïve Bayes classifiers determine whether a record in the test data represents a Shellcode attack or a non-Shellcode attack. The KNN, decision tree, and Naïve Bayes classifiers reached accuracy rates of 96.26%, 97.19%, and 57.57%, respectively. This study's findings aim to offer valuable insights into the application of machine learning to detect or classify malware and other forms of cyberattacks.
Innovative smart showcase design for indoors and eco-friendly hydroponics Exaudi, Kemahyanto; Sembiring, Sarmayanta; Putra Perdana Prasetyo, Aditya; Stiawan, Deris; Fakhrurroja, Hanif; Budiarto, Rahmat
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.8353

Abstract

Hydroponics is a unique and fascinating farming technique for producing plants and vegetables. Without having to use a large area of land, people can easily apply the technique to produce fresh and hygienic vegetables. However, the technique cannot be used in apartment environment due to the limited sunlight. Thus, this study introduces an innovative hydroponic system, called as hydroponics smart showcase system that can be implemented indoors, even in the presence of minimal sunlight, and can be monitored online by users. The proposed system consists of a net pot of 4-5 hydroponics cups with a diameter of 50 mm, air temperature and humidity sensors, water level sensors, ultraviolet (UV) lights, indicator displays, and DC fans. Experimental results show that the development of innovative hydroponics using smart showcase has succeeded in stabilizing the air in the showcase according to the specified references. Moreover, UV light intensity settings for photosynthesis can be applied remotely with duration of 24 hours.
Revolutionizing internet of things intrusion detection using machine learning with unidirectional, bidirectional, and packet features Elsi, Zulhipni Reno Saputra; Stiawan, Deris; Yudho Suprapto, Bhakti; Syamsul Arifin, M. Agus; Yazid Idris, Mohd.; Budiarto, Rahmat
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp3047-3062

Abstract

Detection of attacks on internet of things (IoT) networks is an important challenge that requires effective and efficient solutions. This study proposes the use of various machine learning (ML) techniques in classifying attacks using unidirectional, bidirectional, and packet features. The proposed methods that implement decision tree (DT), random forest (RF), extreme gradient boosting classifier (XGBC), AdaBoost (AB) and linear discriminant analysis (LDA) work perfectly with all kinds of datasets and includes. It also works very well with data type-based feature selection (DTBFS) and correlation-based feature selection (CBFS). The experiment results show a significant improvement compared to previous studies and reveals that unidirectional and bidirectional features provide higher accuracy compared to packet features. Furthermore, ML models, particularly DT, and RF, have faster computing times compared to more complex deep learning models. This analysis also shows potential overfitting in some models, which requires further validation with different datasets. Based on these findings, we recommend the use of RF and DT for scenarios with unidirectional and bidirectional features, while AB and LDA for packet features. The study concludes that using the right ML techniques along with features that work in both directions can make an intrusion detection system for IoT networks becomes very accurate.
New approach to measuring researcher expertise using cosine similarity algorithm and association rules Firdaus, Ali; Stiawan, Deris; Samsuryadi, Samsuryadi; Budiarto, Rahmat
Bulletin of Electrical Engineering and Informatics Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i5.9506

Abstract

This study proposes a new method to assess researcher expertise using publication data. The quality of research publications is an important indicator in the ranking of universities that are undergoing diversification. Research publications have become an important indicator in the university ranking system and have a major impact on the reputation of universities as a lens for the study of expertise and prestige for human resources. Expertise is often difficult to verify objectively, as a result, many people claim to be experts or are considered experts without evidence and correct data. To ensure the expertise of researchers, it must be proven with valid data support through measurable and presentable expertise parameters. The model built uses the cosine similarity and association rule approaches. The publication variables attached to the researcher are formulated in the collaboration of the algorithm to assess the level of researcher expertise. Validation of important points of publications as parameters for measuring expertise has been identified as the main factor contributing to the measurement of researcher expertise and its impact on university reputation. The model built successfully validated researcher expertise up to 72% which is relevant to its support for university rankings up to 75%.
Klasifikasi Shellcode Dengan Machine Learning Berbasis Klasifikasi Biner Naufal Semendawai, Jaka; Stiawan, Deris; Pahendra, Iwan
Jurnal Pendidikan Indonesia Vol. 5 No. 11 (2024): Jurnal Pendidikan Indonesia
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/japendi.v5i11.6291

Abstract

Internet dapat menghubungkan satu orang dengan orang lain dengan menggunakan perangkat masing-masing. Internet sendiri memiliki dampak positif dan negatif. Salah satu contoh dampak negatif dari internet adalah adanya malware yang dapat mengganggu atau bahkan merusak perangkat atau penggunanya; itulah mengapa keamanan siber diperlukan. Banyak cara yang dapat dilakukan untuk mencegah atau mendeteksi malware. Salah satunya adalah dengan menggunakan teknik machine learning. Dataset pelatihan dan pengujian untuk eksperimen ini berasal dari dataset UNSW_NB15. K-Nearest Neighbour (KNN), Decision Tree, dan Naïve Bayes diimplementasikan untuk mengklasifikasikan apakah sebuah record pada data testing merupakan serangan Shellcode atau non-Shellcode. Classifier KNN, Decision Tree, dan Naïve Bayes mencapai tingkat akurasi masing-masing sebesar 96.82%, 97.08%, dan 63.43%. Hasil dari penelitian ini diharapkan dapat memberikan wawasan mengenai penggunaan machine learning dalam mendeteksi atau mengklasifikasikan malwares atau jenis serangan siber lainnya
Clustering man in the middle attack on chain and graph-based blockchain in internet of things network using k-means Nuzulastri, Sari; Stiawan, Deris; Satria, Hadipurnawan; Budiarto, Rahmat
Computer Science and Information Technologies Vol 5, No 2: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/csit.v5i2.p176-185

Abstract

Network security on internet of things (IoT) devices in the IoT development process may open rooms for hackers and other problems if not properly protected, particularly in the addition of internet connectivity to computing device systems that are interrelated in transferring data automatically over the network. This study implements network detection on IoT network security resembles security systems from man in the middle (MITM) attacks on blockchains. Security systems that exist on blockchains are decentralized and have peer to peer characteristics which are categorized into several parts based on the type of architecture that suits their use cases such as blockchain chain based and graph based. This study uses the principal component analysis (PCA) to extract features from the transaction data processing on the blockchain process and produces 9 features before the k-means algorithm with the elbow technique was used for classifying the types of MITM attacks on IoT networks and comparing the types of blockchain chain-based and graph-based architectures in the form of visualizations as well. Experimental results show 97.16% of normal data and 2.84% of MITM attack data were observed.
Co-Authors Abd Rahim, Mohd Rozaini Abdiansah, Abdiansah Abdul Hadi Fikri Abdul Hanan Abdullah Abdul Harris Adi Hermansyah, Adi Adi Sutrisman Aditya Putra Perdana Prasetyo Aditya Putra Perdana Prasetyo Adji Pratomo Agung Juli Anda Agus Eko Minarno Ahmad Fali Oklilas Ahmad Firdaus Ahmad Ghiffari Ahmad Heryanto Ahmad Heryanto Ahmad Heryanto Ahmad Heryanto, Ahmad Ahmad Zarkasi Ahmad Zarkasi Albertus Edward Mintaria Ali Bardadi Ali Firdaus Alshaflut, Ahmed Anto Saputra, Iwan Pahendra Bedine Kerim Bedine Kerim Bhakti Yudho Suprapto Bhakti Yudho Suprapto Bhakti Yudho Suprapto Bin Idris, Mohd Yazid Cahyani, Nyimas Sabilina Darmawijoyo, Darmawijoyo Dasuki, Massolehin Dedy Hermanto Desak Putu Dewi Kasih Dewi Bunga Dian Palupi Rini Dwi Budi Santoso Edi Surya Negara Eko Arip Winanto Endang Lestari Ruskan Ermatita - Erwin, Erwin Fachrudin Abdau Fakhrurroja, Hanif Ferdiansyah Ferdiansyah Fikri, Abdul Hadi Firdaus Firdaus Firdaus, Firdaus Firnando, Rici Firsandaya Malik, Reza Gonewaje gonewaje Habibullah, Nik Mohd Hadipurnawan Satria Harris, Abdul Huda Ubaya Huda Ubaya Huda Ubaya I Gede Yusa Idris, Mohd. Yazid Idris, Mohd. Yazid Imam Much Ibnu Subroto Indradewa, Rhian Iswari, Rosada Dwi John Arthur Jupin Juli Rejito Kemahyanto Exaudi Kurniabudi, Kurniabudi Latius Hermawan Lelyzar Siregar Lina Handayani M. Miftakul Amin M. Ridwan Zalbina Majzoob K. Omer Makmum Raharjo Mardhiyah, Sayang Ajeng Marisya Pratiwi Marita, Raini Massolehin Dasuki Mehdi Dadkhah Meilinda Meilinda Meilinda, Meilinda Mintaria, Albertus Edward Mohamed S. Adrees Mohamed Shenify Mohammad Davarpanah Jazi Mohammed Y. Alzahrani Mohd Arfian Ismail Mohd Azam Osman Mohd Faizal Ab Razak Mohd Rozaini Abd Rahim Mohd Saberi Mohamad Mohd Yazid bin Idris Mohd Yazid Bin Idris Mohd Yazid Idris Mohd Yazid Idris Mohd. Yazid Idris Mohd. Yazid Idris Mohd. Yazid Idris Muhammad Afif MUHAMMAD FAHMI Muhammad Fahmi Muhammad Fermi Pasha Muhammad Qurhanul Rizqie Muhammad Sulkhan Nurfatih Munawar A Riyadi Munawar Agus Riyadi Naufal Semendawai, Jaka Negara, Edi Surya Ni Ketut Supasti Dharmawan Nik Mohd Habibullah Nur Sholihah Zaini Nuzulastri, Sari Osama E. Sheta Osman, Mohd Azam Osvari Arsalan Pahendra, Iwan Permana, Dendi Renaldo Pertiwi, Hanna Prabowo, Christian Purnama, Benni Putra Perdana Prasetyo, Aditya Rahmat Budiarto Rahmat Budiarto Rahmat Budiarto Rahmat Budiarto Rahmat Budiarto Rahmat Budiarto Raja Zahilah Md Radzi Ramayanti, Indri Ramayanti, Indri Reza Firsandaya Malik Reza Maulana Riyadi, Munawar A Rizki Kurniati Rizma Adlia Syakurah Rizqie, Muhammad Qurhanul Rossi Passarella Samsuryadi Samsuryadi Saparudin Saparudin Saparudin, Saparudin Saputra, Muhammad Ajran Sari Sandra Sarmayanta Sembiring Sarmayanta Sembiring Sasut A Valianta Sasut Analar Valianta Semendawai, Jaka Naufal Shahreen Kasim Sharipuddin, Sharipuddin Sidabutar, Alex Onesimus Siti Hajar Othman Siti Nurmaini Sri Arttini Dwi Prasetyawati Sri Desy Siswanti Susanto Susanto Susanto Susanto Susanto, Susanto Sutarno Sutarno Syakurah, Rizma Adlia Syamsul Arifin, M. Agus tasmi salim Tasmi Salim Tole Sutikno Wan Isni Sofiah Wan Din Yaya Sudarya Triana Yazid Idris, Mohd. Yazid Idris, Mohd. Yesi Novaria Kunang Yoga Yuniadi Yudho Suprapto, Bhakti Yundari, Yundari Zulhipni Reno Saputra Els