Claim Missing Document
Check
Articles

Forecasting Production Trafo to Get SDOH Using Seasonal ARIMA Method in PT. XYZ Muhammad Dio Dwi Septian; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 1 No 2 (2021): Proceedings of the 2nd Seminar Nasional Sains 2021
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (311.134 KB) | DOI: 10.21070/pels.v1i2.989

Abstract

In the production process at PT. XYZ has a fluctuating data pattern and contains seasonality. This resulted in a reduction in the company's operational efficiency and difficulty in preparing supplies to meet uncertain demand. The method according to the demand pattern at PT. XYZ in this transformer product is the SARIMA method. The results of forecasting on transformer production at PT.XYZ gets the SARIMA(1,0,1)(1,1,1) model with influenced by the results observed at 13 weeks and errors at 14 weeks ago. The results of this forecast are used in determining the safety stock in 2021 with regard to SDOH. The SDOH planning in January 2021 will run out in 30 days with a stock plan of 838 units LV Busing so that a company policy needed to increase or decrease the stock plan if SDOH is below or above 30-35 days.
Planning Total Veener Production PT. XYZ Krisna Risky Putra Irawan; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 1 No 2 (2021): Proceedings of the 2nd Seminar Nasional Sains 2021
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (532.3 KB) | DOI: 10.21070/pels.v1i2.1025

Abstract

PT. XYZ is engaged in the manufacture and sale of wood veneers. Starting from the constant occurrence of over stock, now the company must make improvements to the production forecasting process so that over stock can be avoided. It can be seen that accurate production forecasting can create conditions for an effective and efficient production system. This study aims to obtain a more accurate forecast of material requirements using the Support Vector Regression (SVR) method, which is the result of the development of a Support Vector Machine (SVM) which has good performance in predicting time series data. Application of the Support Vector Regression (SVR) method with the RBF kernel in predicting the need for veneer production using the MATLAB application, it produces the smallest error rate with a MAPE of 5%, RMSE of 4364.63 and of 0.748274147. on 67 training data and 20 testing data.
Forecasting the Number of Offset Printing Machine Breakdowns Using the Support Vector Machine (SVM) Metdhod Nafis Khumaidah; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 1 No 2 (2021): Proceedings of the 2nd Seminar Nasional Sains 2021
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (525.556 KB) | DOI: 10.21070/pels.v1i2.1027

Abstract

PT. MJT is a company engaged in manufacturing that produces various types of plastic tubes for cosmetic packaging. Production activities at PT. MJT uses an intermittent process, which in the printing division requires a longer total setup time because this process produces various types of specifications of goods to order. This has an effect on the amount of engine breakdown. The purpose of this research is to try the method of forecasting the number of breakdowns for offset printing machines at PT. MJT. One of the methods used in this research is the Support Vector Machine method. Support Vector Machine is a method that can help predict the number of breakdowns that will be experienced by the offset printing machine at PT. MJT. Support vector machine is a method that can reduce the error value in forecasting compared to other methods. From this research, it is hoped that it can produce a forecast of the number of breakdowns for offset printing machines at PT. MJT for a period of one year or twelve periods.
Productivity Measurement Analysis Using Multi Factor Productivity Measurement Model (MFPMM) At PT. Primabox Adiperkasa Much Syafiudin; Boy Isma Putra; Ribangun Bamban Jakaria; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 2 No 2 (2022): Proceedings of the 4th Seminar Nasional Sains 2022
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pels.v2i2.1250

Abstract

PT Primabox Adi Perkasa is a company located on Jl. Jaksa Agung Suprapto, Sumber Gedang, Pandaan, Pasuruan. This company is engaged in manufacturing, namely the production of cardboard boxes. This company can produce up to 550,000 pcs of cardboard boxes per year, employing 300 employees. The problem that arises in the company is caused by changes in the price of raw materials or materials which make changes in costs that must be considered in the production proces. Measuring productivity by using the Multi-Factor Productivity Measurement Model (MFPMM). This method is used to make it easier to measure changes in previous performance, controllers, and controllers of current company performance and can assess and evaluate the effect of profitability resulting from changes in productivity.The results of the research on Productivity Measurement Analysis Using the Multi-Factor Productivity Measurement Model (MFPMM) obtained the productivity index of used cardboard 89.69%, glue 97.72%, electricity 100.79%, fuel 82.24%, oil 109.61%, and The workforce is 123.75%.
Continuous Ship Unloader Availability Analysis Using Association Rules Method with Apriori Algorithm Radiana Atika Sari; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 2 No 2 (2022): Proceedings of the 4th Seminar Nasional Sains 2022
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pels.v2i2.1266

Abstract

Petrokimia Gresik is a company engaged in the argo industry. In an effort to increase productivity, PT. Petrokimia Gresik has a special port used for loading and unloading activities. During loading and unloading activities, special equipment is needed to make it easier to move cargo. Not infrequently this equipment suffers damage that is not known what object affects the damage. Based on the 2021 Asset Utilization Data, internal tools whose availability is still below the target of more than 1% are CSU I and 81.66%. The percentage of equipment availability that is below the target causes the process of unloading raw materials to be not optimal and can cause demurrage costs or company fines to the ship if the cause of the damage is not immediately identified and addressed. This study aims to help companies obtain information about objects that affect CSU I and CSU II experiencing breakdowns. The role of data mining that will be used in this research is association rules with a priori algorithms. Data processing is assisted by Microsoft Excel, RapidMiner software and WEKA software. There are no association rules that are formed with the application of a minimum support value of 50% and a minimum value of 50% confidence, both in CSU I and CSU II data processing. The association rules formed by applying a minimum support value of 20% and a minimum confidence value of 50% for CSU I data processing are 3 rules, while the association rules obtained for CSU II data processing are 2 rules. Based on the rules formed in CSU I and CSU II, the breakdown item that is likely to be damaged is Vertical – Motor 2M1.
Pengembangan UMKM Tempe Pada Desa Kedungcangring Kec. Jabon Kab. Sidoarjo Jawa Timur Tedjo Sukmono; Ribangun bamban Jakaria; Hana Catur Wahyuni
Jurnal Pengabdian Masyarakat Akademisi Vol. 1 No. 3 (2022)
Publisher : Jurnal Pengabdian Masyarakat Akademisi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54099/jpma.v1i3.300

Abstract

PKM Pengembangan UMKM Tempe pada desa Kedung Cangkring Kec. Jabon Kab. Sidoarjo Jawa Timur bertujuan untuk meningkatkan kesejahteraan masyarakat kedungcangkring melalui Pemberdayaan Desa Mandiri sentra Pengrajin tempe sebagai upaya peningkatan kapasitas produksi, peningkatan kapasitas sumberdaya manusia dan penguatan tata kelola organisasi. Kegiatan ini akan dilakukan selama 3 (tiga) tahun bekerjasama dengan pemerintah desa kedungcangkring, kelompok pengrajin tempe serta Dinas Perindustrian dan Perdagangan Pemerintah Kabupaten Sidoarjo. Kegiatan ini akan dilaksanakan dengan 5 kelompok yaitu : Identifikasi permasalahan dilaksanakan pada survey awal dengan pemerintah desa kedungcangkring dan mitra. Permasalahan tersebut antara lain : belum adanya sistem manajemen usaha bagi kelompok pengrajin tempe. Sehingga dari permasalahan tersebut solusi yang ditawarkan adalah perbaikan sistem agribisnis IKM pengrajin Tempe adalah pertama sistem pengolalan usaha yaitu dengan melakukan berbagai pelatihan yang meliputi pelatihan manajemen keuangan, yang kedua adalah sistem monitoring dan evaluasi yang bertujuan untuk mengukur tingkat keberhasilan dan peningkatan pelaksanaan kegiatan. Metode pelaksanaan kegiatan ini dilakukan dengan beberapa pendekatan yaitu Participatory Rural Appraisal dan Participatory Technology Development. Teknik pelaksanaannya dibagi menjadi 3 (tiga) tahap, yaitu persiapan, pelaksanaan dan monitoring evaluasi. Pada akhir kegiatan diharapkan adanya peningkatan produksi dari kelompok pengerajin mitra dan terbentuk sentra pengarajin tempe sebagai kampung tempe di Desa Kedung Cangkring Jabon Sidoarjo
Optimization of Dynamix Cement Inventory Planning with Tsukamoto's Fuzzy Inventory Method at PT TRACK Gusti Nurina Azhariani; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 3 (2022): Proceedings of the 5th Seminar Nasional Sains 2022
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pels.v3i0.1317

Abstract

In 2021, PT TRACK has an average Dynamix Cement inventory of 1,488 sacks/month and the highest inventory can reach 2,240 sacks. The high inventory capacity has an impact on inventory capacity that exceeds the maximum inventory limit (overload). This study aims to determine the optimal amount of Dynamix Cement inventory at PT TRACK so that it does not cause inventory overload. The method used is Fuzzy Inventory Control Tsukamoto. Several stages carried out in this research include (a) forming Fuzzy sets, (b) forming rules (c) inference, and (d) affirmation (defuzzification). The results of this study showed that the optimal supply of Semen Dynamix at PT TRACK in the period December 2020 to December 2021 was 1350 sacks, 1480 sacks, 1300 sacks, 1290 sacks, 1300 sacks, 1350 sacks, 1370 sacks, 1490 sacks, 1790 sacks, 1510 sacks, 1280 sacks, 1300 sacks, and 1320 sacks. Based on the estimated inventory of PT TRACK's Dynamix Cement, the total inventory of Dynamix Cement in the next period using the Tsukamoto Fuzzy Inventory method is 1380 sacks.
Scheduling The Production Process Using Genetic Algorithm Method In Optimization Improvement PT. Kemasan Ciptatama Sempurna Ahmad Fikri Ardianto; Tedjo Sukmono
Tibuana Vol 6 No 1 (2023): Tibuana
Publisher : UNIPA PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36456/tibuana.6.1.6198.23-31

Abstract

PT. Kemasan Ciptatama Sempurna is a company engaged in manufacturing styrofoam . In the company concerned, the order system is still manual, where the order process only depends on the order order. This results in a less efficient scheduling system as evidenced by the ineffectiveness of the scheduling system when the number of orders from various consumers place orders simultaneously. The method used in this study uses a Genetic Algorithm approach , by choosing this method in this study it can improve problems in the company so that the scheduling system can run according to the wishes of consumers both in terms of scheduling time that has been agreed with consumers. The results of the research using the Genetic Algorithm method in production using genetic algorithms, the best time in scheduling production capacity is 2699 seconds, this is an increase in the efficiency of the production process as evidenced by the previous production activity process of 3600 seconds (corner production process), thus saving time by 901 seconds as well as the total time of the production process using a jobshop . can be reduced by selecting an alternative in the production jobshop using a genetic algorithm with a value of 0.023 seconds on the 11th chromosome.
Implementasi Markov Chain Untuk Meminimumkan Biaya Perawatan Mesin Spiral Menggunakan Enumerasi Sempurna Tedjo Sukmono; Mukhammad Surya Lesmana
JTI: Jurnal Teknik Industri Vol 9, No 1 (2023): JUNI 2023
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jti.v8i2.21081

Abstract

Biaya perawatan yang tinggi menjadi salah satu faktor yang perlu ditangani pada perusahaan manufaktur. Perlunya solusi alternatif dalam rangka meminimumkan biaya serta menjaga fungsionalitas perusahaan untuk meminimalisir kerusakan. Fokus penelitian dilakukan pada perusahaan yang bergerak di bidang industri pipa baja, dalam proses pembuatan pipa sering kali terjadi kerusakan pada mesin khususnya mesin spiral dengan komponen berat pada hidrolis, sistem kontrol, Trafo Welding dan Gearbox Milling yang mempengaruhi kelancaran proses produksi, adapun presentase downtime terbesar terjadi pada sistem kontrol mesin senilai 51,12%, Cutting Plasma sebesar 49,91% dan sikat Gram Milling sebesar 25,85%. Semakin lama terjadinya downtime maka akan semakin besar pula biaya perbaikan dari mesin tersebut. Perusahaan mengeluarkan biaya yang cukup signifikan untuk melakukan perawatan mesin spiral ini yaitu dengan biaya awal Rp.206.793.450. Maka metode yang tepat untuk melakukan pengukuran kinerja mesin ini dengan pendekatan enumerasi sempurna didapatkan status ke-6 dan diperlukan overhaul pada state ke-1dan 2 sebagai solusi alternatif state pada perawatan mesin serta implementasi menggunakan metode markov chain dimana perusahaan bisa menghemat biaya perawatannya, pada metode ini didapatkan biaya penghematan untuk jenis perawatan mesin spiral menggunakan kebijakan usulan tiga yaitu sebesar Rp168.493.139, dengan tingkat penghematan biaya sebesar Rp.38.300.311 dengan persentase 18,52%. sebagai usulan perbaikan terbaik dalam implementasi biaya perawatan mesin.
Production Scheduling Analysis To Minimize Inject–Blow Production Makespan on PT.XYZ Using Differential Evolution Algorithm Method Dzati Fauziyah; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 3 (2022): Proceedings of the 5th Seminar Nasional Sains 2022
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/pels.v3i0.1350

Abstract

This study discusses the problem of job-shop scheduling at one of the well-known mineral water companies in Indonesia. This company produces a number of products in several types with different routes from each other. However, in reality, the effectiveness of production lies in the range of 54.8%–69.2%, so it is still far from running time production where the expected target is 80% for inject and 90% for blow. Where production scheduling is a complex problem so it takes the right method to get the optimal solution for these problems. The research method used is the differential evolution algorithm method, where this method aims to minimize the makespan value (total completion time of all jobs) on the job-shop production route so as to obtain optimal scheduling results and improve the existing system. Scheduling obtained through the differential evolution algorithm method produces a makespan value of x minutes, while the company's schedule has a makespan value of y minutes. So that the proposed scheduling results in a decrease of x% compared to company scheduling.
Co-Authors Abdul Rohman Abdul Rohman Adistyas Nastiti, Octavia Afreni Hamidah Afrilia, Riska Agus Subagyo Ahmad Fikri Ardianto Alfian Fajar Gunawan Ali Mashar Ali Sadikin Amatullah, Dhiny Angela, Fitrah Cornellya Apriliana Sari Wulandari, Indah Arba, Risqi Mutia Asni Johari Azhari, Asri Bambang Haryadi Boy Isma Putra Budi, Yusuf Effri Prastyo Cahyana , Atikha Sidhi Dani Sartika Dawam Suprayogi Diwanti Faradiba, Nabila Dristiana, Fila Dwi Kakung Saputro Dzati Fauziyah Ervan Johan Wicaksana Erwin Widiantono Fila Dristiana Gusti Nurina Azhariani Hadian, Mohammad Ekki Hafizah, Mutia Hana Catur Wahyuni Harlis Harlis Hartanti, Lusia Permata Sari Hery Murnawan, Hery Ihsan, Mahya Jamaluddin Jamaluddin Khairatinisa, Khairatinisa Krisna Risky Putra Irawan Leksono, Rudy Bowo Lestari, Wiwik Puji Lindyawati, Lely M.Haris Efendi Hsb Mardhotillah, Bunga Marodiyah, Inggit Mauli, Fajar Dwi Mishani, Adinda Chamilia Mochammad Imam Mashuri Mohammad Buchori Much Syafiudin Muhammad Arizki Zainul Ramadhan Muhammad Dio Dwi Septian Mukhammad Surya Lesmana Muswita Muswita Nafis Khumaidah Natalia, Desfaur Nazifa, Boti Iffa Novi Prastyanda Putra Pratama Nugraha, A. Prima Nugroho, Dizsa Arliansyah Nurma M. Hidayatulloh Octavia Adistyas Nastiti Pangestu, Retno Putra, Tri Syukria Putri, Andini Faizatul Putri, Arinda Jayanti Putri, Melinda Aprilia Rachman, Meisya Azzahra Radiana Atika Sari Rany Riyantati, Dena Rasyid, Mohammad Andi Ribangun Bamban Jakaria Rizky Janatul Magwa Rudy Bowo Leksono Salsabila, Nisrina SANDI KURNIAWAN Sanjaya, Muhammad Erick Saputra, Nur Qomaruddin Sari , Indah Apriliana Sari W, Indah Apriliana Sari Wulandari, Indah Apriliana Setiawan, Ari Rio De Sigit Wahono sisiliani, fitria trisna Sofillauny, Zahara Suhadak Sulistiono Suzanti, Sriliah Syaifullah, Dikril Ilham Tia Wulandari Upik Yelianti Utomo, Pradita Eko Prasetyo Varid Jainuri Wahono, Sigit Wahyu Nugroho Wahyu Setiawan, Ardhi Wardhani, Devira Kusuma Wawan Kurniawan Wijatmiko, Erie Fadma Noer Fitriana Winda Dwi Kartika, Winda Dwi Wiwik Sulistiyowati Wulandari, Indah Apriliana Sari Yoppie Wulanda Zurweni Zurweni