p-Index From 2021 - 2026
6.835
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Buana Informatika Dinamika Informatika Jurnal Teknologi MAGISTRA Sinergi Jurnal Teknologi Informasi dan Ilmu Komputer Telematika Proceedings Konferensi Nasional Sistem dan Informatika (KNS&I) Seminar Nasional Informatika (SEMNASIF) INFORMATIKA Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Ilmiah KOMPUTASI Sistemasi: Jurnal Sistem Informasi JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Creative Information Technology Journal Jurnal Sains dan Informatika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurnal Penelitian dan Pengabdian Kepada Masyarakat UNSIQ CSRID (Computer Science Research and Its Development Journal) Informasi Interaktif JOISIE (Journal Of Information Systems And Informatics Engineering) EDUMATIC: Jurnal Pendidikan Informatika Jurnal Suara Keadilan Technologia: Jurnal Ilmiah KURVATEK Jurnal Tecnoscienza Respati Jurnal Sistem Komputer & Kecerdasan Buatan Journal of Computer System and Informatics (JoSYC) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Madani : Indonesian Journal of Civil Society JURNAL PENDIDIKAN, SAINS DAN TEKNOLOGI Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal Senopati : Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering Journal of Applied Sciences, Management and Engineering Technology (JASMET) Jurnal Ekonomi dan Teknik Informatika Transformasi Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) PELS (Procedia of Engineering and Life Science) JAIA - Journal of Artificial Intelligence and Applications Duta.com : Jurnal Ilmiah Teknologi Informasi dan Komunikasi EXPLORE Prosiding University Research Colloquium COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Jurnal of Information Technology and Society (JITS) Teknomatika: Jurnal Informatika dan Komputer Explore Jurnal Teknologi SWAGATI: Journal of Community Service
Claim Missing Document
Check
Articles

Pengaruh Jenis Stemmer Terhadap Algoritma Svm Pada Analisis Sentimen Berbasis Lexicon Dengan Afinn Lexicon Resource Huda, Luthfi Nurul; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8227

Abstract

Analisis sentimen merupakan bidang ilmu yang memiliki potensi besar dalam penelitian dan aplikasi praktis. Ini merupakan sebuah tugas dari NLP yang dieksploitasi untuk mengekstraksi dan mengklasifikasi konten berdasarkan sentimen emosi baik positive, negative dan netral. Analisis sentimen sendiri dibagi menjadi tiga teknik: teknik berbasis leksikon (lexicon-based), teknik berbasis machine learning (machine learning-based), dan teknik hybrid-based. Penelitian ini mengangkat teknik hybrid-based. Penelitian ini befokus untuk menemukan jenis stemmer yang dapat meningkatkan performa dari algoritma SVM pada analisis sentimen berbasis lexicon. Penelitian ini menerapkan tiga jenis stemmer yang berbeda yakni porter stemmer, snowball stemmer, dan Lancaster stemmer. Kemudian menggunakan AFINN lexicon dictionary. Terakhir algoritma SVM akan dievaluasi menggunakan confusion matrix. Penelitian ini melakukan tiga skenario, yakni gabungan antara jenis stemmer yang digunakan dengan algoritma SVM. Dari ketiga skenario yang dilakukan, gabungan SVM dan Snowball stemmer mendapatkan nilai Accuracy, Precision, Recall dan F1-Score paling tinggi dari dua skenario lainnya. Yakni dengan nilai Accuracy sebesar 95,67 %, Precision sebesar 95,68 %, Recall sebesar 95,67 % dan F1-Score sebesar 95,67 %.
Klasifikasi Hama Pada Daun Sawi Menggunakan Convolutional Neural Network (CNN) Dengan Algoritma Xcaption dan Optimasi Adam Bahri, Saiful; Sunyoto, Andi; Kurniawan, Mei P.
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 2 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i2.9529

Abstract

Sawi (Brassica rapa) adalah sayuran yang populer di Indonesia, namun serangan hama sering kali menghambat produktivitasnya, mengurangi kualitas dan kuantitas panen. Identifikasi hama secara akurat sangat penting untuk pengendalian yang efektif, namun metode konvensional yang melibatkan pengamatan visual sering kali kurang efisien dan rentan terhadap kesalahan manusia. Oleh karena itu, penelitian ini memanfaatkan teknologi terbaru dalam pemrosesan citra dan machine learning untuk meningkatkan akurasi dan efisiensi dalam identifikasi hama pada daun sawi. Convolutional Neural Network (CNN) dengan arsitektur Xception yang dioptimalkan menggunakan algoritma Adam dipilih sebagai metode utama untuk klasifikasi hama daun sawi. Penelitian ini menggunakan dataset gambar daun sawi dari situs publik kaggle, dengan preprocessing yang dilakukan untuk memastikan kualitas dan konsistensi data. Setelah melalui proses augmentasi data dan pelatihan model, model CNN dilatih dengan ukuran batch 64, epoch 100, dan dropout 0,5. Evaluasi menggunakan confusion matrix menunjukkan akurasi pelatihan dan validasi mencapai 99,00%. Hasil menunjukkan bahwa model CNN yang dikembangkan berhasil mencapai akurasi pelatihan dan validasi sebesar 99,00%. Evaluasi model menggunakan confusion matrix menunjukkan bahwa model mampu mengklasifikasikan hama daun sawi dengan akurasi yang sangat tinggi, memberikan solusi yang efisien untuk pengendalian hama di pertanian sawi. Hasil ini menunjukkan bahwa penggunaan teknologi CNN dengan optimasi yang tepat dapat secara signifikan meningkatkan kualitas dan produktivitas hasil panen.
Identifikasi Ekspresi Wajah Manusia Menggunakan Algoritma Grey Wolf Optimizer dan Convolutional Neural Network Rohim, Ni’matur; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8269

Abstract

Penelitian ini mengeksplorasi penggunaan algoritma Grey Wolf Optimizer (GWO) untuk mengoptimalkan parameter pada Convolutional Neural Network (CNN) dalam mengenali ekspresi wajah manusia. Ekspresi wajah adalah aspek penting dalam komunikasi manusia, dan pengenalan ekspresi tersebut menjadi semakin vital dalam interaksi manusia-mesin dan bidang kesehatan psikologi. Metode deep learning, terutama CNN, telah terbukti efektif dalam mengklasifikasikan ekspresi manusia, meskipun masih menghadapi beberapa tantangan, seperti pengaturan parameter yang rumit dan kebutuhan akan data yang besar. Penelitian ini bertujuan untuk mencari parameter optimal untuk meningkatkan kinerja CNN dalam mengenali ekspresi wajah menggunakan algoritma GWO. Data yang digunakan adalah dataset Facial Expression Recognition 2013 (FER-2013), dengan total 600 citra wajah yang dibagi menjadi tiga kelas: happy, sad, dan angry. Pendekatan yang diusulkan mencakup preprocessing data, pencarian parameter arsitektur CNN menggunakan GWO, pembuatan model CNN, dan pengujian model menggunakan data testing. Hasil pengujian menunjukkan bahwa dengan parameter optimal, model CNN mencapai akurasi yang baik, dengan nilai akurasi 79% pada data training, 60% pada data validation, dan rata-rata akurasi 77% pada data testing. Penelitian ini menyoroti pentingnya penanganan yang cermat dalam menentukan parameter untuk memastikan hasil yang optimal dalam pengenalan ekspresi wajah manusia menggunakan CNN.
Peningkatan Akurasi Deteksi Kendaraan Menggunakan Kombinasi Haar Cascade Classifier dan Convolutional Neural Networks (CNN) Irawanto, Indra; Sunyoto, Andi; Kusnawi, Kusnawi
Journal of Electrical Engineering and Computer (JEECOM) Vol 6, No 1 (2024)
Publisher : Universitas Nurul Jadid

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33650/jeecom.v6i1.8242

Abstract

Teknologi pengolahan citra digital dan computer vision telah memainkan peran penting dalam meningkatkan sistem pengaturan lalu lintas. Meskipun kamera CCTV umum digunakan, kebanyakan sistem masih bersifat pasif dan terbatas dalam pengawasan arus lalu lintas. Dalam menanggapi kebutuhan akan sistem yang lebih proaktif dan adaptif, dikembangkan berbagai sistem Manajemen Lalu Lintas Pintar yang mengintegrasikan teknologi deteksi objek kendaraan canggih, seperti kombinasi Haar Cascade Classifier dengan Convolutional Neural Network (CNN). Haar Cascade Classifier efektif dalam mendeteksi objek real-time, namun dapat mengalami kesulitan dalam kondisi gambar kompleks. Integrasi dengan CNN diharapkan meningkatkan akurasi deteksi kendaraan dalam berbagai kondisi pencahayaan dan latar belakang. Penelitian ini bertujuan untuk mengeksplorasi arsitektur CNN yang optimal untuk diintegrasikan dengan Haar Cascade guna mencapai efisiensi dan akurasi deteksi kendaraan yang lebih tinggi dalam pengaturan lalu lintas. Dari hasil eksperimen, kombinasi Haar Cascade dan CNN efektif dalam mendeteksi dan mengestimasi jumlah kendaraan. Performa model tergantung pada kompleksitas gambar, di mana semakin kompleks gambar, semakin rendah akurasi dan sensitivitasnya. Penggunaan arsitektur MobileNet dan Xception menunjukkan kemampuan yang baik dalam mendeteksi kendaraan, dengan Xception memberikan sedikit peningkatan dalam akurasi (80.13%) dibandingkan dengan MobileNet (79.19%), namun dengan waktu komputasi yang sedikit lebih lama (1.02 detik dibandingkan dengan 0.82 detik). Pilihan antara kedua model tergantung pada kebutuhan spesifik aplikasi, seperti kebutuhan untuk akurasi yang lebih tinggi atau kecepatan pemrosesan yang lebih cepat. Dengan demikian, penelitian ini berpotensi untuk memberikan kontribusi signifikan bagi pengembangan sistem lalu lintas yang lebih cerdas dan responsif di masa depan.
Meningkatkan Keamanan Pesan Menggunakan Enkripsi Arnold Cat Map Dan Steganografi Pixel Value Differencing Masruri, Nizar Haris; Kusrini, Kusrini; Sunyoto, Andi
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 3 No. 1 (2019): PROSIDING SEMNAS INOTEK Ke-III Tahun 2019
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/inotek.v3i1.522

Abstract

Pesan tidak hanya berupa text, namun juga berbentuk gambar. Sebuah pesan gambar terkadang merupakan informasi yang sangat rahasia contohnya gambar informasi barang bukti. Untuk itu dibutuhkan teknik untuk melindungi pesan tersebut agar tidak diketahui oleh pihak lain. Pixel Value Differencing (PVD) merupakan salah satu teknik penyisipan pesan ke dalam data digital seperti gambar (citra) dengan kelebihan kapasitas penampung yang besar. PVD menghitung selisih nilai piksel dengan cara membagi piksel-piksel citra menjadi blok-blok yang terdiri dari dua buah piksel yang posisinya berdekatan yang digunakan sebagai tempat penyisipan pesan. Untuk meningkatkan keamanan, maka dilakukan enksripsi pada pesan citra agar konstruksi citra menjadi tidak beraturan sehingga tidak mudah untuk diketahui dan dimanipulasi oleh pihak lain. Paper ini akan menggabungkan steganografi PVD dan metode enskripsi Arnold Cap Map (ACM). Untuk mengetahui kualitas citra yang tersisipi pesan, maka dilakukan evaluasi kualitas citra dengan perhitungan nilai Mean Square Error (MSE) dan Peak Signal to Noise Ratio (PSNR). Hasil pengujian menunjukkan bahwa citra dengan resolusi 512x512 piksel menghasilkan nilai MSE : 0.36311 dan PSNR (db): 57.3356, sedangkan citra dengan resolusi 256x256 piksel menghasilkan nilai MSE : 11.1786 dan PSNR(db) : 42.4521.
Co-Authors *, Pramono A.A. Ketut Agung Cahyawan W Aam Shodiqul Munir Abdul Jalil Rozaqi Abdul Jalil Rozaqi Abdul Mizwar A. Rahim Abidarin Rosidi Abidarin Rosidi Ade Kurniawan kurniawan Ade Pujianto, Ade Afis Julianto Afis Julianto Agus Harjoko Agus Harjoko AGUS PURWANTO Aidina Ristyawan, Aidina Alva Hendi Muhammad Alva Hendi Muhammad Alva Hendi Muhammad Muhammad Ana Wati Ndarbeni Anna Baita Annas Al Amin Arif Sutikno Asro Nasiri Asro Nasiri Asro Nasiri Astria, Kadek Kiki B, Arijal Bahri, Saiful Bambang Soedijono Bambang Soedijono WA Banu Dwi Putranto Bayu Anugerah Putra Bayu Setiaji Bonifacius Vicky Indriyono Bonifacius Vicky Indriyono, Bonifacius Vicky Cahyo, D. Diffran Nur Dhanar Intan Surya Saputra Diansyah, Ahmad Febri Dwi Sari Widyowaty Dwi Yuli Prasetyo Eka Yulia Sari Eko Pramono Eko Pramono Ema Utami Emha Taufiq Luthfi Emha Taufiq Luthfi Ferry Wahyu Wibowo Ferry Wahyu Wibowo Firdiyan Syah Fitri Handayani Gagah Gumelar Gori, Takhamo Hanafi Hanafi Hani Atun Mumtahana Hani Atun Mumtahana Hani Setiani Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Hanif Al Fatta Harianto, Harianto Hidayat Hidayat Huda, Luthfi Nurul Ibnu Hadi Purwanto Ikhwan Baidlowi Sumafta Ikmah Ikmah Indah Nofikasari Irawanto, Indra Ismail, Muhamad Yusuf K Kusrini Kapti . kurniawan, Ade Kurniawan Kurniawan, Mei P Kurniawan, Mei P. Kusnawi Kusnawi Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini Kusrini, K Kusrini, Kusrini Liana Trihardianingsih Licantik M rudyanto Arief M. Afriansyah M. Rudyanto Arief M. Suyanto M. Suyanto, M. M. Syukri Mustafa Maie Istighosah Mashuri, Ahmad Sanusi Masruri, Nizar Haris Mohammad Suyanto Mudawil Qulub Muhammad Rudyanto Arief Muhammad Setiyawan Muhammad, Anva Hendi Muhartini, Sitti Mumtahana, Hani Atun Mursyid Ardiansyah Nalendra, Adimas Ketut Nasiri, Asro Noordin Asnawi Norlaila2 Nugraha, Anggit Ferdita Nulngafan, Nulngafan Nur Arifin Akbar Parsiyono Parsiyono Patmawati Patmawati, Patmawati Pramono * Putranto, Dinar Wakhid Quratul Ain Rafli Junaidi Kasim Rahim Jamal Rahmat Hidayat Raynaldi Fatih Amanullah Ria Andriani Rifda Faticha Alfa Aziza Rifqi Mulyawan Riyanto, Thomas Pramuji Singgih Riza Marsuciati Rizfi Syarif Rizky Arya Kurniawan Rohim, Ni’matur Rudi Prietno Sahirul Muklis Salmuasih - Samsul Bahri Sari, Rita Novita Setiawan Budiman Sholihin, Iasya Silvi Agustanti Bambang Singgih Arif Widodo Slamet Triyanto Soedijono W A, Bambang Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudiana Sudiana Sukresno Sukresno Sulistyowati Sulistyowati Suliswaningsih Suliswaningsih Sumafta, Ikhwan Baidlowi Supomo, Eko Sutejo, Danang Syah, Firdiyan Syah, Firdiyan Syukirman Amir TONNY HIDAYAT Tribiakto, Herlandro Ulinuha, Hinova Rezha W., Bambang Soedijono WA, Bambang Soedijono Wahyu Caesarendra Wahyu Hidayat Wihayati, Wihayati Windarni, Vikky Aprelia Windha Mega Pradnya Dhuhita Wing Wahyu Winarno Yoga Dwi Pambudi Yoga Pristyanto Yohanes Setyo Prabowo, Yohanes Setyo Yusuf Sutanto Zaipin, Zaipin