p-Index From 2020 - 2025
9.627
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) ELKHA : Jurnal Teknik Elektro Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Elkom: Jurnal Elektronika dan Komputer Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik Prosiding SNATIF Jurnal Transformatika Scientific Journal of Informatics Seminar Nasional Informatika (SEMNASIF) Sisforma: Journal of Information Systems JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Journal of Information System Jurnal Informatika Upgris Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika SISFOTENIKA JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Wikrama Parahita : Jurnal Pengabdian Masyarakat Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING J-SAKTI (Jurnal Sains Komputer dan Informatika) Building of Informatics, Technology and Science Jurnal Informatika dan Rekayasa Perangkat Lunak Abdimasku : Jurnal Pengabdian Masyarakat Jurnal Pengabdian kepada Masyarakat Nusantara Jurnal Teknik Informatika (JUTIF) JUDIMAS (Jurnal Inovasi Pengabdian Kepada Masyarakat) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat Advance Sustainable Science, Engineering and Technology (ASSET) J-SAKTI (Jurnal Sains Komputer dan Informatika) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Jurnal Maklumatika Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Journal of Computing Theories and Applications Seminar Nasional Teknologi dan Multidisiplin Ilmu Scientific Journal of Informatics Journal of Future Artificial Intelligence and Technologies Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

APLIKASI STOK AUDIT DI PT. MEDIA SARANA DATA BERBASIS ANDROID DENGAN ARSITEKTUR MODEL VIEW PRESENTER Mohammad Arif Muttaqin; Ajib Susanto; Muslih
Jurnal Maklumatika Jurnal Maklumatika Vol. 6 No. 2 (2020)
Publisher : Program Studi Teknik Informatika Sekolah Tinggi Teknologi Informasi NIIT

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (526.004 KB)

Abstract

Manajemen persediaan merupakan suatu upaya dari perusahaan untuk memonitor barang. Saat ini, PT. Media Sarana Data (Gmedia) mengalami hambatan pada manajemen persediaan barang-barang yang ada di customer yang masih dicatat secara manual belum menggunakan sistem, sehingga kondisi barang dan kesalahan teknis belum termonitor dengan baik dan proses audit stok membutuhkan waktu lebih lama. Penelitian ini membahas tentang sistem manajemen persediaan atau stok audit barang yang ada di customer Gmedia. Metode yang diusulkan menggunakan arsitektur Model View Presenter (MVP) dikarenakan arsitektur ini memisahkan tampilan dengan fungsi sistem. Hal ini dilakukan agar pengembangan selanjutnya menjadi lebih mudah dan memungkinkan untuk melakukan pengujian dari sisi tampilan dan pengujian dari sisi fungsi sistem dan pengujian dapat dijalankan secara otomatis. Penelitian ini menghasilkan aplikasi stok audit untuk PT. Media Sarana Data yang dapat dengan mudah dipelihara dan dilakukan update untuk waktu mendatang. Hasil pengujian sistem dengan black box testing seluruh fitur aplikasi dengan MVP dapat berhasil dijalankan dan menghasilkan informasi yang diinginkan.
Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation Ajib Susanto; Ibnu Utomo Wahyu Mulyono; Christy Atika Sari; Eko Hari Rachmawanto; De Rosal Ignatius Moses Setiadi; Md Kamruzzaman Sarker
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i3.pp1448-1458

Abstract

Although numerous studies have been conducted on handwritten recognition, there is little and non-optimal research on Javanese script recognition due to its limitation to basic characters. Therefore, this research proposes the design of a handwritten Javanese Script recognition method based on twelve layers deep convolutional neural network (DCNN), consisting of four convolutions, two pooling, and five fully connected (FC) layers, with SoftMax classifiers. Five FC layers were proposed in this research to conduct the learning process in stages to achieve better learning outcomes. Due to the limited number of images in the Javanese script dataset, an augmentation process is needed to improve recognition performance. This method obtained 99.65% accuracy using seven types of geometric augmentation and the proposed DCNN model for 120 Javanese script character classes. It consists of 20 basic characters plus 100 others from the compound of basic and vowels characters.
Perbandingan Klasifikasi Jenis Apel Berkulit Merah Menggunakan Algoritma Linear Discriminant Analysis dan K-Nearest Neighbor Ajib Susanto; Ibnu Utomo Wahyu Mulyono
Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Prosiding Seminar Nasional Teknologi Informasi dan Bisnis (SENATIB) 2022
Publisher : Fakultas Ilmu Komputer Universitas Duta Bangsa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.482 KB)

Abstract

Buah apel merupakan salah satu buah yangmempunyai rasa dominan manis segar dan memiliki vitamin Ctinggi. Apel dibudidayakan untuk tujuan konsumsi, obat maupunindustri. Dalam industry, apel digunakan sebagai bahan bakupembuatan berbagai macam bentuk makanan dan minumanmisalnya sirup, jenang, wingko, dodol, manisan, asinan, keripik,dan sari apel. Jenis apel yang beragam dan kebutuhan waktupendistribusian berdasarkan jenis apel memerlukan banyakwaktu dan berhubungan dengan kemampuan mata manusiadalam proses sorting manual. Kebutuhan teknologi seperticomputer vision melalui teknik pengolahan citra dapatdiimplementasikan untuk proses sorting khususnya klasifikasijenis apel. Dalam penelitian ini, digunakan apel dengan kulitberwarna merah sebagai dataset. Kesamaan warna kulit danbentuk apel yang hampir sama, menjadi salah satu isu pentinguntuk proses klasifikasi citra. K Nearest Neighbor (KNN) danLinear Discriminant Analysis (LDA) dipilih karena kemampuanklasifikasi citra dengan dataset kecil. Dalam penelitian ini telahdilakukan proses perbandingan hasil akurasi antara KNN danLDA berdasarkan 400 dataset yang berasal dari 8 jenis apelmerah antara lain Cameo, Honeycrips, Pink Lady, Red Delicious,Royal Gala, Macintosh, Empire, Fuji. KNN dan LDA tanpamenggunakan ekstraksi fitur GLCM menghasilkan akurasi yanghampir sama yaitu 99,25% dan 99% sedangkan apabila tidakmenggunakan fitur ekstraksi apapun dihasilkan akurasi 99,25%dan 99%. Dengan demikian diketahui bahwa KNN menghasilkanakurasi lebih tinggi dibanding PCA, meskipun hanya terdapatsedikit selisih akurasi.
CONVOLUTIONAL NEURAL NETWORK DALAM SISTEM DETEKSI HELM PADA PENGENDARA MOTOR Ajib Susanto; Yupie Kusumawati; Ericsson Dhimas Niagara; Christy Atika Sari
Seminar Nasional Teknologi dan Multidisiplin Ilmu (SEMNASTEKMU) Vol 2 No 1 (2022): SEMNASTEKMU
Publisher : Universitas Sains dan Teknologi Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/semnastekmu.v2i1.158

Abstract

Di tahun ini sudah terjadi perubahan atau revolusi dalam sistem industri yaitu revolusi industri 4.0, di mana industri sudah mengimplementasikan sebuah mesin-mesin yang serba cepat dan praktis untuk membantu dalam hal produktivitas. Dengan semakin pesatnya teknologi, banyak alat-alat yang di ciptakan untuk perkembangan teknologi di dunia. Pemanfaatan teknologi di gunakan untuk sebagai penggerak di pesatnya sistem berbasis AI ini dapat di manfaatkan untuk di berbagai bidang, salah satunya adalah penerapan sistem deep learning dan salah satu teknik yang terkenal dan sudah banyak digunakan untuk klasifikasi citra adalah menggunakan metode Jaringan Syaraf Tiruan (JST) yang mampu mengenali wajah manusia dan suatu gambar citra lalu mengklasifikasinya atau bisa di sebut image classification dan image recognition. Untuk perancangan sistem deteksi helm pada penelitian ini akan menggunakan algoritma CNN(Convolutional Neural Network). Convolutional Neural Network dan untuk model arsitektur yang di gunakan adalah MobileNetV2 dengan akurasi 80%, yang dapat di kategorikan baik dalam sebuah akurasi.
SISTEM MONITORING SUHU DAN KELEMBABAN KANDANG AYAM BERBASIS INTERNET OF THINGS (IOT) Novita Kurnia Ningrum; Tiara Widya Kusuma; Ibnu Utomo Wahyu Mulyono; Ajib Susanto; Yupie Kusumawati
Elkom : Jurnal Elektronika dan Komputer Vol 16 No 2 (2023): Desember : Jurnal Elektronika dan Komputer
Publisher : STEKOM PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/elkom.v16i2.1153

Abstract

Broiler chickens are livestock whose growth is influenced by environmental temperature. The temperature of the chicken coop that is not suitable can affect the decrease in productivity and cause death in broiler chickens, so that the temperature setting of the cage must be considered. The design of this temperature and humidity monitoring system uses a nodemcu ESP8266 microcontroller and an arduino uno. If the measured temperature exceeds the set temperature limit, the system will send an SMS to the smartphone so that the cage officer can take appropriate action.
Feasibility Analysis of Bengkel Koding Website Using Black Box Testing and Boundary Value Analysis Putri, Clara Edrea Evelyna Sony; Susanto, Ajib
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i2.13589

Abstract

In an era of rapid technological development, application development has become common, especially in coding. However, most websites do not give appropriate assignments and instructors to help improve coding skills. Because of this, the Bengkel Koding of Dian Nuswantoro University Semarang is a solution to improving the quality of coding learning. This research aims to identify the shortcomings in the website and ensure that the website functions as expected by the users. By testing the application like this, researchers can know which problems can affect the user experience. This research uses one of the frequently used tests, namely Black Box testing. The objective is to verify that the system's functions, inputs, and outputs align with the specified requirements. In addition to the Black Box method, this research uses a technique called Boundary Value Analysis. This technique is to identify errors or bugs that can affect the user experience by focusing on the input value boundary. The test results will use a quality ratio that will determine whether or not the system is suitable for use by users. Through 30 test cases, most website functions have been tested properly, with the feasibility level reaching 83.333%. Nonetheless, five errors or bugs were still found, emphasizing the need for further improvement. The results of this study provide valuable insights into improving the quality and convenience of users in accessing the Bengkel Koding website.
Comparison Of Machine Learning Algorithms On Stunting Detection For 'Centing' Mobile Application To Prevent Stunting Sabilillah, Ferris Tita; Sari, Christy Atika; Abiyyi, Ryandhika Bintang; Susanto, Ajib
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.13967

Abstract

Stunting is a growth disorder caused by chronic undernutrition, with long-term impacts on child health and development. In Indonesia, the prevalence of stunting reached 31.8% in children under five years old in 2018, indicating an urgent need for effective interventions. In an effort to address this issue, we developed a mobile application called Centing (Cegah Stunting) that utilizes machine learning for early detection and prevention of stunting. In this study, we compare the performance of four machine learning algorithms Logistic Regression, Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel, Convolutional Neural Network (CNN), and Multilayer Perceptron (MLP) in detecting children's nutritional status based on a dataset from Kaggle with 121 thousand data and four main features: age, gender, height, and nutritional status. The experimental results show that SVM with RBF kernel and CNN achieved the highest accuracy of 98%, while Logistic Regression and MLP achieved 76% and 97% accuracy respectively. SVM with RBF kernel was chosen as the best model due to its high accuracy and efficiency in computation time. These findings suggest that the Centing application, with the implementation of SVM RBF, has significant potential in early detection and prevention of stunting, and makes an important contribution to improving child health in Indonesia.
Improved Javanese script recognition using custom model of convolution neural network Susanto, Ajib; Mulyono, Ibnu Utomo Wahyu; Sari, Christy Atika; Rachmawanto, Eko Hari; Setiadi, De Rosal Ignatius Moses; Sarker, Md Kamruzzaman
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6629-6636

Abstract

Handwriting recognition in Javanese script is not widely developed with deep learning (DL). Previous DL and machine learning (ML) research is generally limited to basic characters (Carakan) only. This study proposes a deep learning model using a custom-built convolutional neural network to improve recognition accuracy performance and reduce computational costs. The main features of handwritten objects are textures, edges, lines, and shapes, so convolution layers are not designed in large numbers. This research maximizes optimization of other layers such as pooling, activation function, fully connected layer, optimizer, and parameter settings such as dropout and learning rate. There are eleven main layers used in the proposed custom convolutional neural network (CNN) model, namely four convolution layers+activation function, four pooling layers, two fully connected layers, and a softmax classifier. Based on the test results on the Javanese script handwritten image dataset with 120 classes consisting of 20 basic character classes and 100 compound character classes, the resulting accuracy is 97.29%.
Helmet Detection Based on Cascade Classifier and Adaptive Boosting Susanto, Ajib; Kusumawati, Yupie
Journal of Applied Intelligent System Vol. 8 No. 2 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i2.7392

Abstract

The increasing number of traffic accidents caused by motorcyclists not wearing helmets has led to an increase in the number of studies related to road safety surveillance. The research system used is an automatic system to detect whether the motorcyclist is wearing a helmet or not. Many studies use image processing systems, deep learning and computer vision. In this research, Cascade Classifier and Adaptive Boosting have been implemented for the process of identifying motorcycle riders with helmets and without helmets. The number of datasets used is 500 datasets with labels on the image of the driver with a helmet and the image of the driver without a helmet. Based on the test results, an accuracy of 90% has been obtained
An optimation of advanced encryption standard key expansion using genetic algorithm and least significant bit integration Marjuni, Aris; Rijati, Nova; Susanto, Ajib; Sinaga, Daurat; Purwanto, Purwanto; Hasibuan, Zainal Arifin; Yaacob, Noorayisahbe Mohd.
Bulletin of Electrical Engineering and Informatics Vol 13, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i6.8367

Abstract

Ensuring data security in today’s digital landscape is of paramount importance, driving the exploration of advanced techniques for safeguarding confidential information. This study introduces a robust approach that combines advanced encryption standard (AES) encryption with key expansion, genetic algorithms (GA), and least significant bit (LSB) embedding to achieve secure data concealment within digital images. Motivated by the pressing need for enhanced data protection, our work addresses the critical challenge of securing sensitive information from unauthorized access. Specifically, we present a systematic methodology that integrates AES encryption for robust data security, GA for optimization, and LSB embedding for subtle information concealment. Through comprehensive experimentation, involving images such as ‘Lena.jpg,’ ‘Peppers.jpg,’ and ‘Baboon.jpg,’ we demonstrate the efficacy of our approach. The imperceptible modification rates mean squared error (MSE) of 0.199, 0.101, and 0.105, coupled with high peak signal-to-noise ratios (PSNR) of 10.04 dB, 9.95 dB, and 9.79 dB respectively, underscore the fidelity and subtlety of the embedded information. This study contributes to the ongoing discourse on data security by offering a comprehensive and innovative approach that addresses the evolving challenges in safeguarding digital information.
Co-Authors - Wijanarto - Wijanarto -, Wijanarto -, Wijanarto Abdussalam Abdussalam Abdussalam Abdussalam Abdussalam Abiyyi, Ryandhika Bintang Adrian Angga Pramono Afrizal Aziz Maulana Agus Winarno Agus Winarno, Agus Akhmad Rizaldy Ali Muqoddas Ali, Rabei Raad Alviana Dina Putri Anak Agung Gede Sugianthara Anggraeny, Tiara Antonio Ciputra Antonius Erick Handoyo Antonius Wibowo Atmojo, Cahyo Tri Bayu Wicaksono Briliantino Abhista Prabandanu Bustami, Sri Heri Cahyani, Anis Putma Carmelita, Bastiaans Jessica Christy Atika Sari Ciputra, Antonio D.R.I.M. Setiadi De Rosal Ignatius Moses Setiadi Desi Purwanti Desi Purwanti Kusumaningrum Dian Kristiawan Nugroho Didik Hermanto Dimas Irawan Ihya’ Ulumuddin Doheir, Mohamed Dwi Puji Prabowo Dwi Puji Prabowo, Dwi Puji Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Ericsson Dhimas Niagara Erwin Erwin Etika Kartikadarma Fakhriyan Nur Rofiq Farrel Athaillah Putra Febrian, Muhamad Rizky Fajar Fikri Budiman Fikri Budiman Galih Setyo Wibowo Gan, Hong-Seng Gilang Raharjito Haqikal, Hafidz Hayu Wikan Kinasih Hilmi, Muhammad Abror Auliya Ibnu Gemaputra Ramadhan Ibnu Utomo Ibnu Utomo W.M. Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Ibnu Utomo WM Ihya Ulumuddin, Dimas Irawan Imam Kurniawan Imam Prayogo Pujiono Indra Kusuma Islam, Hussain Md Mehedul Istiqomah, Annisa Ayu Karis Widyatmoko Khafiizh Hastuti Krismawan, Andi Danang Kusuma, Tiara Widya Kusumawati, Yupie L. Budi Handoko Laksono, Enggar Adji Lalang Erawan Latifah Diah Kumalasari Lutfi Madiono Marjuni, Aris Md Kamruzzaman Sarker Md Kamruzzaman Sarker Mega Bintang Hatmi Moch Arief Soeleman Mochammad Lukman Mohammad Arif Muttaqin Mohd Yaacob, Noorayisahbe Muhammad Atho’il Maula Muhammad Nur Haztinanto Mulyanto, Ibnu Utomo Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Musfiqur Rahman Sazal Muslih Muslih Muslih Muslih Muslih Nabiha Riandika, Muhammad Afiq Ningrum, Novita Kurnia Nova Rijati Novita Kurnia Ningrum Novita Kurnia Ningrum Nugroho, Widhi Bagus Ojugo, Arnold Adimabua Ozagastra Caluella Prambudi Panjaitan, Yonathan Gani Panjaitan, Yonathan Gani Purwanto, Purwanto Putri, Clara Edrea Evelyna Sony Rachman, Rahadian Kristiyanto Raga Nufusula Raihan Yusuf Ramadhan, Aditya Wahyu Respatria, Nabila Maharani Rico Rian Alvian Rosyida, Ghaitsa Ardelia Sabilillah, Ferris Tita Saputra, The Manuel Eric Saraswati, Galuh Wilujeng Sarker, Md Kamruzzaman Sembiring, Rinawati Setiarso, Ichwan Sinaga, Daurat Sinaga, Daurat Sinar Setyawan Stefanus Santosa Sudaryanto Sudaryanto Sudaryanto Sudaryanto SUDARYANTO SUDARYANTO Sudaryanto Sudaryanto Suprayogi Suprayogi Teresa Enades Hari Setia Tiara Anggraeny Tiara Widya Kusuma Tri Wulandari Utomo W.M, Ibnu Utomo W.M, Ibnu Wellia Shinta Sari Widyatmoko Karis Wijanarto Wijanarto Wijanarto Wijanarto Wijanarto Wijanarto Yaacob, Noorayisahbe Mohd. Yupie Kusumawati Zahrotul Umami, Zahrotul Zainal Arifin Hasibuan Zuama, Leygian Reyhan