p-Index From 2020 - 2025
8.761
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Seminar Nasional Aplikasi Teknologi Informasi (SNATI) ELKHA : Jurnal Teknik Elektro Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Elkom: Jurnal Elektronika dan Komputer Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik Prosiding SNATIF Jurnal Transformatika Scientific Journal of Informatics Seminar Nasional Informatika (SEMNASIF) Sisforma: Journal of Information Systems JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Journal of Information System Jurnal Informatika Upgris Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika SISFOTENIKA JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Wikrama Parahita : Jurnal Pengabdian Masyarakat Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING J-SAKTI (Jurnal Sains Komputer dan Informatika) Building of Informatics, Technology and Science Jurnal Informatika dan Rekayasa Perangkat Lunak Abdimasku : Jurnal Pengabdian Masyarakat Jurnal Pengabdian kepada Masyarakat Nusantara Jurnal Teknik Informatika (JUTIF) JUDIMAS (Jurnal Inovasi Pengabdian Kepada Masyarakat) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat J-SAKTI (Jurnal Sains Komputer dan Informatika) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Jurnal Maklumatika Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Journal of Computing Theories and Applications Seminar Nasional Teknologi dan Multidisiplin Ilmu Scientific Journal of Informatics Journal of Future Artificial Intelligence and Technologies Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Comparison Of Machine Learning Algorithms On Stunting Detection For 'Centing' Mobile Application To Prevent Stunting Sabilillah, Ferris Tita; Sari, Christy Atika; Abiyyi, Ryandhika Bintang; Susanto, Ajib
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.13967

Abstract

Stunting is a growth disorder caused by chronic undernutrition, with long-term impacts on child health and development. In Indonesia, the prevalence of stunting reached 31.8% in children under five years old in 2018, indicating an urgent need for effective interventions. In an effort to address this issue, we developed a mobile application called Centing (Cegah Stunting) that utilizes machine learning for early detection and prevention of stunting. In this study, we compare the performance of four machine learning algorithms Logistic Regression, Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel, Convolutional Neural Network (CNN), and Multilayer Perceptron (MLP) in detecting children's nutritional status based on a dataset from Kaggle with 121 thousand data and four main features: age, gender, height, and nutritional status. The experimental results show that SVM with RBF kernel and CNN achieved the highest accuracy of 98%, while Logistic Regression and MLP achieved 76% and 97% accuracy respectively. SVM with RBF kernel was chosen as the best model due to its high accuracy and efficiency in computation time. These findings suggest that the Centing application, with the implementation of SVM RBF, has significant potential in early detection and prevention of stunting, and makes an important contribution to improving child health in Indonesia.
Improved Javanese script recognition using custom model of convolution neural network Susanto, Ajib; Mulyono, Ibnu Utomo Wahyu; Sari, Christy Atika; Rachmawanto, Eko Hari; Setiadi, De Rosal Ignatius Moses; Sarker, Md Kamruzzaman
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6629-6636

Abstract

Handwriting recognition in Javanese script is not widely developed with deep learning (DL). Previous DL and machine learning (ML) research is generally limited to basic characters (Carakan) only. This study proposes a deep learning model using a custom-built convolutional neural network to improve recognition accuracy performance and reduce computational costs. The main features of handwritten objects are textures, edges, lines, and shapes, so convolution layers are not designed in large numbers. This research maximizes optimization of other layers such as pooling, activation function, fully connected layer, optimizer, and parameter settings such as dropout and learning rate. There are eleven main layers used in the proposed custom convolutional neural network (CNN) model, namely four convolution layers+activation function, four pooling layers, two fully connected layers, and a softmax classifier. Based on the test results on the Javanese script handwritten image dataset with 120 classes consisting of 20 basic character classes and 100 compound character classes, the resulting accuracy is 97.29%.
Helmet Detection Based on Cascade Classifier and Adaptive Boosting Susanto, Ajib; Kusumawati, Yupie
Journal of Applied Intelligent System Vol. 8 No. 2 (2023): Journal of Applied Intelligent System
Publisher : Universitas Dian Nuswantoro and IndoCEISS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jais.v8i2.7392

Abstract

The increasing number of traffic accidents caused by motorcyclists not wearing helmets has led to an increase in the number of studies related to road safety surveillance. The research system used is an automatic system to detect whether the motorcyclist is wearing a helmet or not. Many studies use image processing systems, deep learning and computer vision. In this research, Cascade Classifier and Adaptive Boosting have been implemented for the process of identifying motorcycle riders with helmets and without helmets. The number of datasets used is 500 datasets with labels on the image of the driver with a helmet and the image of the driver without a helmet. Based on the test results, an accuracy of 90% has been obtained
An optimation of advanced encryption standard key expansion using genetic algorithm and least significant bit integration Marjuni, Aris; Rijati, Nova; Susanto, Ajib; Sinaga, Daurat; Purwanto, Purwanto; Hasibuan, Zainal Arifin; Yaacob, Noorayisahbe Mohd.
Bulletin of Electrical Engineering and Informatics Vol 13, No 6: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i6.8367

Abstract

Ensuring data security in today’s digital landscape is of paramount importance, driving the exploration of advanced techniques for safeguarding confidential information. This study introduces a robust approach that combines advanced encryption standard (AES) encryption with key expansion, genetic algorithms (GA), and least significant bit (LSB) embedding to achieve secure data concealment within digital images. Motivated by the pressing need for enhanced data protection, our work addresses the critical challenge of securing sensitive information from unauthorized access. Specifically, we present a systematic methodology that integrates AES encryption for robust data security, GA for optimization, and LSB embedding for subtle information concealment. Through comprehensive experimentation, involving images such as ‘Lena.jpg,’ ‘Peppers.jpg,’ and ‘Baboon.jpg,’ we demonstrate the efficacy of our approach. The imperceptible modification rates mean squared error (MSE) of 0.199, 0.101, and 0.105, coupled with high peak signal-to-noise ratios (PSNR) of 10.04 dB, 9.95 dB, and 9.79 dB respectively, underscore the fidelity and subtlety of the embedded information. This study contributes to the ongoing discourse on data security by offering a comprehensive and innovative approach that addresses the evolving challenges in safeguarding digital information.
Enhanced Vision Transformer and Transfer Learning Approach to Improve Rice Disease Recognition Rachman, Rahadian Kristiyanto; Setiadi, De Rosal Ignatius Moses; Susanto, Ajib; Nugroho, Kristiawan; Islam, Hussain Md Mehedul
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10459

Abstract

In the evolving landscape of agricultural technology, recognizing rice diseases through computational models is a critical challenge, predominantly addressed through Convolutional Neural Networks (CNN). However, the localized feature extraction of CNNs often falls short in complex scenarios, necessitating a shift towards models capable of global contextual understanding. Enter the Vision Transformer (ViT), a paradigm-shifting deep learning model that leverages a self-attention mechanism to transcend the limitations of CNNs by capturing image features in a comprehensive global context. This research embarks on an ambitious journey to refine and adapt the ViT Base(B) transfer learning model for the nuanced task of rice disease recognition. Through meticulous reconfiguration, layer augmentation, and hyperparameter tuning, the study tests the model's prowess across both balanced and imbalanced datasets, revealing its remarkable ability to outperform traditional CNN models, including VGG, MobileNet, and EfficientNet. The proposed ViT model not only achieved superior recall (0.9792), precision (0.9815), specificity (0.9938), f1-score (0.9791), and accuracy (0.9792) on challenging datasets but also established a new benchmark in rice disease recognition, underscoring its potential as a transformative tool in the agricultural domain. This work not only showcases the ViT model's superior performance and stability across diverse tasks and datasets but also illuminates its potential to revolutionize rice disease recognition, setting the stage for future explorations in agricultural AI applications.
Facial Expression Recognition using Convolutional Neural Networks with Transfer Learning Resnet-50 Istiqomah, Annisa Ayu; Sari, Christy Atika; Susanto, Ajib; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8329

Abstract

Facial expression recognition is important for many applications, including sentiment analysis, human-computer interaction, and interactive systems in areas such as security, healthcare, and entertainment. However, this task is fraught with challenges, mainly due to large differences in lighting conditions, viewing angles, and differences in individual eye structures. These factors can drastically affect the appearance of facial expressions, making it difficult for traditional recognition systems to consistently and accurately identify emotions. Variations in lighting can alter the visibility of facial features, while different angles can obscure critical details necessary for accurate expression detection. This study addresses these issues by employing transfer learning with ResNet-50 and effective pre-processing techniques. The dataset consists of grayscale images with a 48 x 48 pixels resolution. It includes a total of 680 samples categorized into seven classes: anger, contempt, disgust, fear, happy, sadness, and surprise. The dataset was divided so that 80% was allocated for training and 20% for testing to ensure robust model evaluation. The results demonstrate that the model utilizing transfer learning achieved an exceptional performance level, with accuracy at 99.49%, precision at 99.49%, recall at 99.71%, and an F1-score of 99.60%, significantly outperforming the model without transfer learning. Future research will focus on implementing real-time facial recognition systems and exploring other advanced transfer learning models to further enhance accuracy and operational efficiency.
Pengembangan Website Desa Ratamba Kecamatan Pejawaran Kabupaten Banjarnegara Untuk Meningkatkan Pemasaran Dan Penjualan Produk Pertanian Mulyono, Ibnu Utomo Wahyu; Susanto, Ajib; Kusumawati, Yupie; Ningrum, Novita Kurnia; Umami, Zahrotul; Widyatmoko, Karis; Sudaryanto, Sudaryanto
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 7, No 2 (2024): MEI 2024
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v7i2.2076

Abstract

Dieng Kabupaten Banjarnegara memiliki iklim yang cocok untuk pertanian sayuran. Khususnya di Desa Ratamba Kecamatan Pejawaran Kabupaten Banjarnegara memiliki komoditas pertanian kentang dan wortel. Untuk saat ini hasil panen dipasarkan secara konvensional dengan mengumpulkan hasil panen pada pengepul dan mengirimkan ke pasar untuk selanjutnya dikirim ke beberapa daerah di sekitar kabupaten Banjarnegara. Pemasaran dengan metode konvensional sudah dilakukan dalam jangka waktu yang cukup lama. Akan tetapi ada celah kekurangan yang terjadi di rantai distribusi dalam proses bisnis pertanian tersebut. Salah satunya adalah petani tidak dapat menentukan harga sayuran hasil panennya karena distribusi sayuran harus melalui pengepul atau tengkulak terlebih dahulu. Sehingga yang menentukan harga di pasar adalah pengepul, bukan oleh petani secara langsung. Selain itu, petani juga tidak dapat memperluas jangkauan pemasaran hasil pertaniannya. Disebabkan distribusi barang tidak dilakukan oleh petani akan tetapi oleh dilakukan oleh pengepul juga. Oleh karena alasan tersebut maka pada pengabdian pada masyarakat ini dikembangkan website yang dapat diakses oleh petani di Desa Ratamba untuk memasarkan dan menjual hasil pertanian mereka secara langsung. Dengan adanya media online yang digunakan oleh petani diharapkan dapat meningkatkan pendapatan dan kesejahteraan para petani. Dengan demikian diharapkan petani dapat terus mempertahankan dan meingkatkan kualitas hasil pertanian mereka
Implementasi Content Placement pada Pemasaran Digital pada Program Kepemudaan PKKP Disporapar Jawa Tengah Ningrum, Novita Kurnia; Susanto, Ajib Susanto; Kusumawati, Yupie; Widyatmoko, Karis; WM, Ibnu Utomo
ABDIMASKU : JURNAL PENGABDIAN MASYARAKAT Vol 7, No 3 (2024): SEPTEMBER 2024
Publisher : LPPM UNIVERSITAS DIAN NUSWANTORO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/ja.v7i3.2472

Abstract

Pemerintah Provinsi Jawa Tengah melalui Program Kepedulian dan Kepeloporan Pemuda (PKKP) dari Dinas Pemuda dan Olahraga Jawa Tengah atau Dispora Jateng memberikan perhatian untuk mendukung pemuda di wilayah Provinsi Jawa Tengah berkembang dan mampu mengembangkan potensi yang ada di daerah masing masing. Pada bulan Mei 2024 Dispora Jateng bekerjasama dengan Udinus menyelenggarakan kegiatan workshop dan seminar dengan topik materi digital content. Salah satu aspek yang dimiliki pemuda dalam berpartisipasi di PKKP adalah memiliki ide atau konsep berupa produk yang dapat menunjang kemajuan daerahnya masing-masing. Produk dapat berupa produk barang ataupun jasa, begitupun dapat berupa hardware ataupun software. Adapula produk yang mereka baa berupa produk budaya local yang memiliki potensi wisata sehingga mampu mengundang masyarakat dari daerah lain untuk mengenal dan berkunjung ke daerah tersebut. Adapun ide dan konsep yang sudah ada baik yang udah berjalan maupun akan dijalankan menghadapi kendala berkaitan dengn penggunaan teknologi untuk meningkatkan efektifitas pengenalan dan pemasaran dalam lingkup yang luas. Salah satu hal yang belum dimiliki oleh para peserta PKKP adalah bagaimana memproduksi konten yang dapat memeberikan impact terhadap peningkatan pemasaran produk yang mereka miliki. Oleh karena pentingnya pemahaman dan ketrampilan menggunakan teknologi untuk digital marketing, maka pada  kegiatan seminar dan workshop yang diselenggarakan pada bulan Mei ini, salah satu ketrampilan yang dibagikan adalah content placement yaitu bagaimana menjadikan digital content yang diposting di media sosial dapat diakses oleh masyarakat luas. Dalam hal ini masyarakat yang dimaksudkan adalah bagaimana mengarahkan masyarakat sesuai dengan target market sehingga efektif dalam menggunakan sumberdaya untuk pemasaran produk. Efektifitas penggunaaan teknologi untuk digital marketing memberikan keuntungan dalam pengembangan produk yaitu kemampuan menjangkau pasar yang luas dengan waktu yang dibutuhkan relatif lebih efisien sehingga biaya pemasaran menjadi lebih murah dibandingkan dengan conventional marketing. 
Implementation of Tesseract OCR and Bounding Box for Text Extraction on Food Nutrition Labels Saputra, The Manuel Eric; Susanto, Ajib; Carmelita, Bastiaans Jessica
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6107

Abstract

This study focuses on implementing Optical Character Recognition (OCR) using the Tesseract engine, integrated with bounding box detection, to extract nutritional information from food nutrition labels. The research addresses the challenge of limited consumer access to and understanding of nutritional data, a factor contributing to health issues such as obesity and related metabolic disorders. Studies indicate that although Indonesian consumers generally have a good level of knowledge and positive attitudes toward nutritional labels, the actual behavior of reading and understanding these labels remains limited. Additionally, packaged foods consumed outside the home constitute a significant portion of daily caloric intake, which can lead to health complications if not properly managed. With obesity levels among adults in Indonesia rising to concerning rates, this study highlights the importance of providing accessible nutritional data. In this work, MobileNetV1 is used as the backbone model for bounding box detection, effectively identifying and isolating label regions to enhance OCR accuracy. Tesseract OCR, known for its LSTM-based architecture, is applied to predict sequential data patterns, such as rows of text on nutrition labels. Preprocessing techniques, including grayscale conversion, brightness adjustment, CLAHE (Contrast Limited Adaptive Histogram Equalization), and denoising, are used to improve text clarity and further refine OCR output accuracy. Post-processing steps involve rule-based and contextual error correction to handle common OCR inaccuracies. Evaluated on 10 different label images, the system achieved a maximum Word Error Rate (WER) of 10% and a Character Error Rate (CER) of 1.6%, demonstrating high accuracy in nutritional information extraction.
Implementation of Item-Based Collaborative Filtering Algorithm for Blangkon Product Recommendation on Web-Based E-commerce System Atmojo, Cahyo Tri; Susanto, Ajib
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6120

Abstract

In the development of technology at this time, especially in the trade sector, there is no escape from the development of information technology which has had a significant impact. The most obvious form in the development of information technology in the trade sector is e-commerce, which allows transactions between sellers and buyers to be easier. Not only that, the problem now is that users must be spoiled with features that help to recommend user desires. This requires a recommendation system to help select user desires based on products with high ratings. Therefore, it must continue to develop a system that has features to support the sales system. To achieve the system needs to require a method that supports such as using the collaborative filtering method. This method focuses the analysis on similarities between items, because it is more stable and not always sensitive to changing data with a large number of users. The collaborative filtering method is used in the recommendation system to predict inter-user preferences for blangkon products based on the similarity of other user patterns, so that product recommendations appear that they have never seen or bought before. This technique uses an item-based model in it. The results of the performance test to determine the level of prediction accuracy of the method in this study using the mean absolute error. With MAE for three times trying to get a value of 0.5, 0.3 and 0.2.
Co-Authors - Wijanarto - Wijanarto -, Wijanarto -, Wijanarto Abdussalam Abdussalam Abdussalam Abdussalam Abdussalam Abiyyi, Ryandhika Bintang Adrian Angga Pramono Afrizal Aziz Maulana Agus Winarno Agus Winarno, Agus Akhmad Rizaldy Ali Muqoddas Ali, Rabei Raad Alviana Dina Putri Anak Agung Gede Sugianthara Anggraeny, Tiara Antonio Ciputra Antonius Erick Handoyo Antonius Wibowo Atmojo, Cahyo Tri Bayu Wicaksono Briliantino Abhista Prabandanu Bustami, Sri Heri Carmelita, Bastiaans Jessica Christy Atika Sari Ciputra, Antonio D.R.I.M. Setiadi De Rosal Ignatius Moses Setiadi Desi Purwanti Desi Purwanti Kusumaningrum Dian Kristiawan Nugroho Didik Hermanto Dimas Irawan Ihya’ Ulumuddin Dimas Irawan Ihya‘ Ulumuddin Doheir, Mohamed Dwi Puji Prabowo Dwi Puji Prabowo, Dwi Puji Eko Hari Rachmawanto Elkaf Rahmawan Pramudya Ericsson Dhimas Niagara Erwin Erwin Etika Kartikadarma Fakhriyan Nur Rofiq Farrel Athaillah Putra Febrian, Muhamad Rizky Fajar Fikri Budiman Galih Setyo Wibowo Gan, Hong-Seng Gilang Raharjito Haqikal, Hafidz Hayu Wikan Kinasih Hussain Md Mehedul Islam Ibnu Gemaputra Ramadhan Ibnu Utomo Ibnu Utomo W.M. Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo WM Imam Kurniawan Imam Prayogo Pujiono Indra Kusuma Islam, Hussain Md Mehedul Istiqomah, Annisa Ayu Karis Widyatmoko Khafiizh Hastuti Kusumawati, Yupie L. Budi Handoko Laksono, Enggar Adji Lalang Erawan Latifah Diah Kumalasari Lutfi Madiono Marjuni, Aris Md Kamruzzaman Sarker Md Kamruzzaman Sarker Mega Bintang Hatmi Moch Arief Soeleman Mochammad Lukman Mohamed Doheir Mohamed Doheir Mohammad Arif Muttaqin Muhammad Atho’il Maula Muhammad Nur Haztinanto Mulyanto, Ibnu Utomo Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Musfiqur Rahman Sazal Muslih Muslih Muslih Muslih Muslih Ningrum, Novita Kurnia Noorayisahbe Mohd Yaacob Nova Rijati Novita Kurnia Ningrum Ojugo, Arnold Adimabua Ozagastra Caluella Prambudi Panjaitan, Yonathan Gani Panjaitan, Yonathan Gani Purwanto, Purwanto Putri, Clara Edrea Evelyna Sony Rachman, Rahadian Kristiyanto Raga Nufusula Raihan Yusuf Ramadhan, Aditya Wahyu Rico Rian Alvian Rosyida, Ghaitsa Ardelia Sabilillah, Ferris Tita Saputra, The Manuel Eric Saraswati, Galuh Wilujeng Sarker, Md Kamruzzaman Sembiring, Rinawati Setiarso, Ichwan Sinaga, Daurat Sinaga, Daurat Sinar Setyawan Stefanus Santosa Sudaryanto Sudaryanto Sudaryanto Sudaryanto Sudaryanto Sudaryanto SUDARYANTO SUDARYANTO Suprayogi Suprayogi Teresa Enades Hari Setia Tiara Anggraeny Tiara Widya Kusuma Tri Wulandari Utomo W.M, Ibnu Utomo W.M, Ibnu Wellia Shinta Sari Widhi Bagus Nugroho Widyatmoko Karis Wijanarto Wijanarto Wijanarto Wijanarto Wijanarto Wijanarto Yaacob, Noorayisahbe Mohd. Yupie Kusumawati Yupie Kusumawati Zahrotul Umami, Zahrotul Zainal Arifin Hasibuan Zuama, Leygian Reyhan