Claim Missing Document
Check
Articles

Stratigraphy Seismic and sedimentation Development of Middle Baong Sand, Aru Field, North Sumatera Basin Nanda Natasia; Ildrem Syafri; Muhammad Kurniawan Alfadli; Kurnia Arfiansyah
Journal of Geoscience, Engineering, Environment, and Technology Vol. 1 No. 1 (2016): JGEET Vol 01 No 01 : December (2016)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1297.511 KB) | DOI: 10.24273/jgeet.2016.11.7

Abstract

This paper defines the stratigraphic sequence focused on Middle Baong Sand. The analyses aim to understand the sedimentation pattern regarding to sequence stratigraphy model including its lateral and vertical succession based on seismic and well data. The study can be used in ranking the prospect for new oil field. Based on the analyses in 39 seismic sections and 2 wireline log, the area are consist of three depositional sequences, namely sequence I (consist of HST I) Sequence II (consist of TST II and LST II), and Sequence III (consist of TST III). Baong Formation are deposited when the sea level are rising regionally at Middle Miocene (N7-N15) makes the sediment deposited in deep water environment. while Middle Baong Sand are deposited in the minor falling stage placed at N13 (Middle of Middle Miocene). In this episode, there is a change in depositional setting from bathyal to middle neritic. Clastic origin of this deposits were interpreted came from South-South West direction or from Bukit Barisan where at that time is started to uplift.
Characterization of Basement Fracture Reservoir In Field ‘X’, South Sumatera Basin, Based On The Analysis of Core And FMI Log Hartawi Riskha; Ildrem Syafri; Ismawan Ismawan; Nanda Natasia
Journal of Geoscience, Engineering, Environment, and Technology Vol. 2 No. 2 (2017): JGEET Vol 02 No 02 : June (2017)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3544.342 KB) | DOI: 10.24273/jgeet.2017.2.2.196

Abstract

Basement reservoir is a reservoir that is located in the basement rock, comprised of either igneous rock or metamorphic rock that has secondary porosity, resulting in its capability to store oil and gas. The research was conducted at field 'X' that is located at South Sumatra basin and it is a part of Jambi Sub-Basin. The study was focused on discussing hydrocarbon potential in Fields 'X', particularly at the basement metamorphic rock. The study was conducted at two wells in the field. The secondary porosity system of the basement is fracture porosity. Fracture analysis as secondary porosity system was performed on two wells, HA-1 and HA-2, by using FMI log interpretation. Based on the analysis of fracture on HA-1 well, the trend of fracture system is Northeast - Southwest (NE-SW) with a fracture porosity of 1.49%. On a different note, the trend of fracture system on HA-2 wells is East Northeast - West Southwest (ENE-WSW) with a fracture porosity of 0.888%. The effect of rock properties itself has little influence on the number of fractures as opposed to the effect of surrounding tectonic forces. The fractures are controlled by geological structures following Jambi pattern that has an orientation of Northeast - Southwest (NE-SW). Although the fracture porosity is relatively small, it is enough to storing hydrocarbons in economical quantity.
The Transitional Gabbroic Rocks in Bayah Geological Complex, Western part of Java, Indonesia, Inferred from XRF, ICP-MS, and Microprobe Analysis Aton Patonah; Haryadi Permana; Ildrem Syafri
Journal of Geoscience, Engineering, Environment, and Technology Vol. 6 No. 4 (2021): JGEET Vol 06 No 04 : December (2021)
Publisher : UIR PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25299/jgeet.2021.6.4.7189

Abstract

Gabbro, is a fossil remnant of oceanic crust in western part of Java, found at Bayah Geological Complex (BGC) and Ciletuh Melange Complex (CMC), Indonesia. It has been studied by using petrographic, X-Ray Fluorescence (XRF), and inductively coupled plasma-mass spectrometry (ICP-MS) and mineralogical (microprobe) analyses. Mineral and geochemical composition of these rocks provide important clues to their origins since the rocks have been deformed and gone through auto metamorphism, beside they contain the economic mineral and or rare earth elements (REE). Gabbroic rocks in these two areas generally shows phaneritic to porphyritic texture, granular texture. These rocks in CMC are dominated by plagioclase (oligoclase to albite), hornblende, pyroxene, partly altered to tremolite, actinolite, chlorite, epidote, and sericite; meanwhile those of BGC dominantly consist of plagioclase, pyroxene, hornblende, some present of chlorite, actinolite, epidote and biotite as secondary minerals. In multi-element diagrams, gabbroic rocks in CMC show strong negative Sr and Zr, but positive Nb anomaly, while those of BGC show strong negative anomaly of Nb and Zr. In addition, based on rare earth elements (REE) diagrams, gabbroic rocks in CMC show depleted of light rare earth elements (LREE) with negative Eu anomaly, while gabbro’s in BGC show enrichment of LREE. These characteristics indicate that GBC’s and CMC’s gabbroic rocks came from different magma sources, one was formed by partial melting of depleted upper mantle reservoir while the other one was formed by partial melting of mantle wedge with active participation of subducted slab in an arc tectonic setting, suprasubduction zone which were formed at started Upper Cretaceous to Paleogene, and they had retrograde metamorphism to epidote amphibolite facies.
Intensitas Erosi pada Kerucut Sinder Gunungapi Slamet Berdasarkan Pembagian Kelas Morfometri Kerucut, Jawa Tengah Wilda Aini Nurlathifah; Ildrem Syafri; Johanes Hutabarat; Agustina Djafar
Jurnal Lingkungan dan Bencana Geologi Vol 10, No 2 (2019)
Publisher : Badan Geologi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5818.278 KB) | DOI: 10.34126/jlbg.v10i2.261

Abstract

Gunung Slamet memiliki 35 kerucut sinder di sisi lereng timurnya. Kerucut ini menyebar secara acak dan hadir baik di tubuh Gunung Slamet dan sebagian kecil di kaki Gunung Slamet. Kerucut sinder ini merupakan jenis kerucut parasit monogenetik yang muncul setelah Gunung Slamet Tua terbentuk. Meskipun secara sekilas kenampakan morfologi kerucut sinder Gunung Slamet hampir seluruhnya sama, namun dengan menggunakan data citra beresolusi tinggi akan didapat perbedaan bentuk kenampakan morfologinya. Dari kenampakan morfologi ini dapat dihitung morfometrinya untuk ditentukan kelas kerucutnya. Menurut Taylor, dkk. (2003), kelas morfometri kerucut sinder ini berhubungan dengan tingkat degradasi atau erosi dari suatu kerucut. Tujuan penelitian ini adalah untuk mengidentifikasi intensitas erosi yang terjadi pada kerucut sinder Gunung Slamet berdasarkan pembagian kelas morfometrinya. Metode penelitian yang digunakan adalah metode analisis morfometri dengan menggunakan citra satelit TerraSar untuk menghitung parameter kerucut, seperti bentuk kerucut, bentuk kawah, relief, sudut lereng kerucut, dan rasio tinggi kerucut/diameter alas kerucut. Untuk memudahkan penelitian, dipilih 5 buah kerucut sinder yang mewakili kelompok kerucut yang hadir di tubuh (fasies medial) dan di kaki (fasies distal) Gunung Slamet baik secara soliter maupun berkelompok. Kelima kerucut sinder tersebut adalah Kerucut Sinder Bukit Lingi/Pisang, Kerucut Sinder Bukit Kandanggotong, Kerucut Sinder Bukit Siremeng, Kerucut Sinder Bukit Batusanggar dan Kerucut Sinder Bukit Telu. Kelas morfometri kerucut 1 menunjukkan tingkat erosi yang paling rendah dengan karakteristik bentuk kerucut yang masih cukup sempurna, bentuk kawah yang masih terlihat jelas dan dalam, nilai sudut lereng yang besar, relief yang cukup halus, dan rasio tinggi/diameter alas kerucut yang cukup tinggi. Semakin besar angka dalam kelas morfometri kerucut sinder memberi arti bahwa intensitas erosi semakin besar. Dari kelima kerucut sinder yang dianalisis diketahui bahwa kerucut sinder Bukit Telu yang terletak pada kaki Gunung Slamet memiliki kelas morfometri kerucut 1. Hal ini berarti intensitas erosinya paling rendah. Sementara itu, kerucut sinder Bukit Siremeng yang terletak di tubuh Gunung Slamet masuk ke dalam kelas kerucut 4 dan memiliki intensitas erosi paling tinggi dibandingkan dengan keempat kerucut lainnya.
Evolusi Cekungan Serayu pada Paleogen hingga Neogen Awal Syaiful Bachri; Febri Hirnawan; Adjat Sudradjat; Ildrem Syafri; Djajang Sukarna
Indonesian Journal of Applied Sciences Vol 1, No 3 (2011)
Publisher : Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/ijas.v1i3.1877

Abstract

On the basis of paleogeographic study, it is revealed that during Paleogene, or exactly during Middle Eocene – Oligocene times, the southern part of the study area was occupied by the Bogor Trough Low, or Bobotsari Low in the Purbalingga area. The lows were bounded by the Southern Serayu Range high in the south. During that time, the South Serayu Range high , including the active volcanoes  on  it , was still above the sea level, and therefore the Serayu Basin formed a back arc basin. During the Neogene time the volcanic belt moved northwards to the north of the Bogor Through. The peak of volcanism occurred during Late Miocene – the lower part of Early Pliocene, which is indicated by formation of the Kumbang volcanic rocks. Meanwhile, the South Serayu Range has been submerged by transgression event causing the Serayu Basin turned to be fore-arc basin. The method used in this research is probabilistic analysis involving XRD variable, i.e. Q/(Q+F) or quartz per quartz and feldspar,  and petrographic analysis variable, i.e. amount of constituents of volcanic origin or total volcanic rock fragments and volcanic glass (Rv+Gv). The result of probabilistic analysis using the variables as mentioned previously suggests that since the formation of the Worawari Formation (Middle Eocene – Oligocene) to the formation of the Penyatan Formation (Late Miocene – lower part of the Early Pliocene) tectonic activity increased, triggering increasing volcanic activity. ****Berdasarkan studi paleogeografi diketahui bahwa selama Paleogen, atau tepatnya pada waktu Eosen Tengah – Oligosen,  bagian selatan daerah penelitian ditempati oleh rendahan Palung Bogor, atau rendahan Bobotsari di daerah Purbalingga, sementara rendahan tersebut berbatasan langsung dengan tinggian Pegunungan Serayu Selatan. Pada waktu itu Pegunungan Serayu Selatan beserta gunungapi – gunungapi yang aktif masih berada di atas muka air laut, sehingga Cekungan Serayu merupakan cekungan busur – belakang. Pada waktu Neogen, terjadi pergeseran lajur gunungapi ke sebelah utara Palung Bogor. Puncak kegiatan vulkanisme terjadi pada Miosen Akhir – bagian bawah Pliosen Awal, yang ditandai oleh pembentukan Batuan Gunungapi Kumbang. Sementara itu, Pegunungan Serayu Selatan sudah tenggelam oleh peristiwa genang-laut yang menyebabkan Cekungan Serayu berubah menjadi cekungan busur muka. Metode yang dipakai dalam penelitian ini adalah analisis probabilistik yang melibatkan variabel defraksi sinar-X , yaitu Q/(Q+F) atau kuarsa per kuarsa dan feldspar, dan variabel dari analisis petrografi, yaitu jumlah penyusun asal volkanik atau total fragmen batuan volkanik dan gelas volkanik (Rv+Gv). Hasil analisis probabilistik dengan variabel-variabel tersebut di atas menunjukkan bahwa sejak pembentukan Formasi Worawari (Eosen Tengah – Oligosen) hingga Formasi Penyatan (Miosen Akhir – bagian bawah Pliosen Awal) menunjukkan peningkatan kegiatan tektonik yang disertai peningkatan kegiatan gunungapi.
Imobilitas Unsur Tanah Jarang (UTJ) selama Mineralisasi Cu pada Granitoid Sulit Air, Provinsi Sumatra Barat Ronaldo Irzon; Ildrem Syafri; Iwan Setiawan; Johanes Hutabarat; Purnama Sendjaja; Agus Didit Haryanto
JURNAL RISET GEOLOGI DAN PERTAMBANGAN Vol 29, No 2 (2019)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/risetgeotam2019.v29.1019

Abstract

Transfer massa terkait perubahan komposisi geokimia batuan induk akibat alterasi hidrotermal, metasomatisme, maupun pelapukan menjadi topik untuk mempelajari proses geologi terkait. Perubahan massa tersebut dapat dijelaskan dan divisualisasikan melalui metode Isocon. Mineralisasi tembaga teridentifikasi pada salah satu bagian dari Granitoid Sulit Air di Kecamatan X Koto Diatas, Kabupaten Solok. Tulisan ini bertujuan untuk menjelaskan transfer massa akibat mineralisasi Cu pada Granitoid Sulit Air dengan diagram Isocon. XRF dan ICP-MS di Laboratorium Pusat Survey Geologi, Kementerian ESDM (2015) digunakan sebagai perangkat pengukuran kadar oksida utama, unsur jejak, dan unsur tanah jarang. Berdasarkan korelasi antara kandidatnya, Al2O3 dianggap sebagai oksida immobile. K2O, Rb, Sr, dan Ba terkayakan sedangkan oksida utama lain maupun unsur jejak diketahui terkurangkan akibat mineralisasi Cu. UTJ  terdeteksi immobile akibat mineralisasi Cu dengan karakter yang relatif sama antara batuan segar dan teralterasi. Meski demikian, sebagian Ce teroksidasi akibat proses mineralisasi sehingga menurunkan anomali positif Ce. Penurunan nilai anomali negatif Eu pada sampel teralterasi dapat mengakibatkan plagioklas semakin terkurangkan. Karakter tipe-I Granitoid Sulit Air diperjelas melalui nilai perbandingan A/CNK, perbandingan N2O terhadap K2O, perbandingan Rb/Sr, dan perbandingan Rb/Ba. Afinitas granitoid busur kepulauan menunjukkan bahwa pembentukan Granitoid Sulit Air terkait dengan vulkanisme di bagian barat Sumatra.Mass transfer related changes in the geochemical composition of the host rock due to hydrothermal alteration, metamorphism, and weathering is an interesting topic for studying related geological processes. The transfer can be explained and visualized through the Isocon method. Copper mineralization was identified in an area of Sulit Air Suite at X Koto Diatas District, Solok Regency. This paper aims to explain mass transfer due to Cu mineralization on Sulit Air Suite with Isocon diagrams. XRF and ICP-MS of the Center for Geological Survey Laboratory were applied to measure the major oxides, trace elements, and rare earth elements contents of the samples. Based on the correlation between candidates, Al2O3 is considered as the immobile species. K2O, Rb, Sr, and Ba appear to be enriched while other major oxides and rare elements are reduced due to Cu mineralization. REEs are immobile due to Cu mineralization with relatively the same character between fresh and altered rocks. However, some Ce was probably oxidized due to the mineralization process thus reducing the positive anomaly Ce. Moreover, the more negative Eu anomaly means that plagioclase might have been replaced by K-feldspar due to this alteration. The I-type characters of Sulit Air Suite are clarified by  A/CNK value, N2O to K2O comparison, Rb/Sr ratio, and Rb/Ba ratio. The affinity to the volcanic arc granitoid implies that the Sulit Air Suite is related to volcanism in the western part of Sumatra.  
A Comprehensive Comparison Study of Empirical Cutting Transport Models in Inclined and Horizontal Wells Asep Mohamad Ishaq Shiddiq; Brian Christiantoro; Ildrem Syafrie; Abdurrokhim -; Bonar Tua Halomoan Marbun; Petra Wattimury; Hastowo Resesiyanto
Journal of Engineering and Technological Sciences Vol. 49 No. 2 (2017)
Publisher : Institute for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2017.49.2.9

Abstract

In deviated and horizontal drilling, hole-cleaning issues are a common and complex problem. This study explored the effect of various parameters in drilling operations and how they affect the flow rate required for effective cutting transport. Three models, developed following an empirical approach, were employed: Rudi-Shindu's model, Hopkins', and Tobenna's model. Rudi-Shindu's model needs iteration in the calculation. Firstly, the three models were compared using a sensitivity analysis of drilling parameters affecting cutting transport. The result shows that the models have similar trends but different values for minimum flow velocity. Analysis was conducted to examine the feasibility of using Rudi-Shindu's, Hopkins', and Tobenna's models. The result showed that Hopkins' model is limited by cutting size and revolution per minute (RPM). The minimum flow rate from Tobenna's model is affected only by well inclination, drilling fluid weight and drilling fluid rheological property. Meanwhile, Rudi-Shindu's model is limited by inclinations above 45°. The study showed that the investigated models are not suitable for horizontal wells because they do not include the effect of lateral section.
Gumuk gunung api purba bawah laut di Tawangsari - Jomboran, Sukoharjo - Wonogiri, Jawa Tengah Gendoet Hartono; Adjat Sudrajat; Ildrem Syafri
Indonesian Journal on Geoscience Vol 3, No 1 (2008)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (738.494 KB) | DOI: 10.17014/ijog.3.1.37-48

Abstract

http://dx.doi.org/10.17014/ijog.vol3no1.20084This paper discusses the study on the basalt volcanic rocks and the volcano morphology indicating the existence of an ancient submarine volcano in Tawangsari-Jomboran sub-regency, Sukoharjo- Wonogiri, Central Java. In general, this basalt volcanic rocks were identified as andesite breccia which might be grouped into the Mandalika Formation of Oligosen-Miosen age (Surono et al., 1992). The origin of the Mandalika Formation in relation to the classic sedimentation process and the submarine volcanism is still needed to be evaluated. The present study was based on the detailed descriptions of the rocks both in the field and in the laboratory. The autoclastic basalt outcrops consisting of breccias show the characteristics of the igneous rock fragment component embedded in the groundmass with the same composition, namely igneous rock, dark grey to black in colour; porphyritic texture, rough surface, brecciated; pillow structures, massive, fine vesicularities, amygdaloidal filled with calcite, and radial fractures; calk-alkaline andesite composition ( SiO = 54.71% , K O = 1.15% ). This rock body attains the  dimension of 2 - 5 m length, and 40 cm - 1 m in diameter with the direction of the deposition varies following the direction of the eruption source. Brecciated structures on the surface was controlled by the high cooling rate and the low flow, while the interior of the rock is massive because it was not in a direct contact to the cooler mass outside. Autoclastic basalt breccias and or the pillow basalt lava was interpreted to be formed by the undulating low gradient of morphology with the average angle of <10o. On the other hand, the low basaltic magma viscosity produced the effusive eruption related to the formation of the low angle morphology. The distance between the hills generally composed of pillow basalt is between 500 m - 1 km. The typical pillow structure of the igneous rock as described above is interpreted to be the product of the lava flow related to the effusive eruption  from a submarine volcano located under or close to the seawater surface.   
The origin of Cihara granodiorite from South Banten Udi Hartono; Ildrem Syafri; Reza Ardiansyah
Indonesian Journal on Geoscience Vol 3, No 2 (2008)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (556.417 KB) | DOI: 10.17014/ijog.3.2.107-116

Abstract

http://dx.doi.org/10.17014/ijog.vol3no2.20085Petrographical and geochemical characteristics of the Late Oligocene Cihara Granodiorite from South Banten are presented. Data show that the rock was originated from magma of a continental origin formed at a subduction zone environment. Fractional crystallization involving plagioclase, hornblende, pyroxene, and magnetite was the main process responsible for the geochemical variation of the rocks from the Cihara Granodiorite. There are two possibilities of parental magmas to the Cihara Granodiorite, i.e. the basaltic/ or andesitic magma of the Cikotok Formation or crustal melting magma from a subduction process. Some trace element data of the basaltic rocks from the Cikotok Formation are needed to support the first interpretation. Alternatively, heating of the Jawa lower crust by magma from either mantle or subducted slab melting caused the crustal melting to produce intermediate parent magma. Some degree of mixing between those two differ- ent magma sources during the fractionation may be involved in the petrogenesis.    
The Evolution of Gajahmungkur Paleovolcano, Wonogiri, Central Java, as A Reference to Revize the Terminology of “Old Andesite Formation” Ildrem Syafri; A. Sudradjat; Nana Sulaksana; G. Hartono
Indonesian Journal on Geoscience Vol 5, No 4 (2010)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1060.567 KB) | DOI: 10.17014/ijog.5.4.263-268

Abstract

DOI: 10.17014/ijog.v5i4.109Gajahmungkur is a Tertiary paleovolcano located in Wonogiri Regency, Central Java. The volcanic product of this volcano are widely distributed and composed of important elements of the stratigraphic sequence in the Southern Mountain area. The volcanic products so far have been simply classified as “Old Andesite Formation” which apparently is not in line with the stratigraphic code and the Indonesian Stratigraphic Code. The description of paleovolcano therefore might contribute to the revision of the “Old Andesite Formation”. The evolution of Gajahmungkur paleovolcano commenced with the formation of a submarine volcano, and then at the second phase a composite volcano emerged above sea level forming a volcano island. The third phase was the self destruction resulting in a formation of a caldera. Pumiceous components dominated the products. At the fourth phase, the activities began to decline producing more basaltic rocks. The statistical analysis of the interrelation between various physical properties of the clastic rocks leads to the identification of volcanic facies and the location of the paleovolcano vent.
Co-Authors A. Sudradjat A. Sudradjat A. Sudradjat Abdurrokhim ⠀ Abdurrokhim, . Achmad Noerkhaerin Putra Adi Hardiyono, Adi Adjat Sudradjat Adjat Sudradjat Adjat Sudradjat Adjat Sudradjat Adjat Sudradjat Adjat Sudrajat Adjat Sudrajat Agus Didit Haryanto Agus Didit Haryanto -, Agus Didit Haryanto Agustiany, Irfani Agustina Djafar Agustinus, Eko Tri Sumarnadi Ahadi Ahmat Lamburu Ahmad Luthfi Aini, Hana Nur Almun Madi Amitama, Emilia Bunga Andi Agus Nur Andi Agus Nur, Andi Agus Antonius Bambang Yuniarto -, Antonius Bambang Yuniarto Aprillia, Belinda Rizka Ardiansyah, Reza Asep Mohamad Ishaq Shiddiq Aton Patonah Aton Patonah, Aton Awaludin, Winarno Benyamin Benyamin Benyamin Benyamin, Benyamin Benyamin, Benyamin Bonar Tua Halomoan Marbun Brian Christiantoro Budi Muljana Budiadi, E. Christiantoro, Brian Denis, Mutebi Deny Setiady Djadjang Jedi Setiadi Djajang Sukarna E. T. Paripurno E. T. Paripurno Eko Tri Sumarnadi Agustinus Eko Tri Sumarnadi Agustinus Electricia, K.S. Elfitra, Dhanu Embara, Patra Emi Sukiyah Emy Sukiyah Euis Tintin Yuningsih Euis Y. Yuningsih, Euis Y. Evaristus Budiadi F. G, Aiwoy Fachrudin, Kurnia Arfiansyah Fadhly, Ahmad Febri Hirnawan Febriwan Mohamad, Febriwan Febriwan Mohammad, Febriwan Febyani, Siska Firman Herdiansyah, Firman G. Hartono G. Hartono Ginanjar, Asep Hadian, Muhamad Sapari Dwi Hadian, Muhamad Sapari Dwi Hana Morina, Hana Hananto kurnio Hartawi Riskha Hartawi Riskha, Hartawi Hartono, G. Hartono, Udi Haryadi Permana Hastowo Resesiyanto Hendarmawan Hendarmawan Hendarmawan Hendarmawan, Hendarmawan Heri Hermiyanto Zajuli, Heri Hermiyanto Hermes Panggabean Hermes Panggabean Herry -, Herry Hilarius Rodriguez Hilarius Rodriguez, Hilarius Hill Gendoet Hartono Hutabarat, Johannes ilmi, irpan Iqbal Ramadhan, M. Iqbal, M. Irzon, Ronaldo Irzon, Ronaldo Iskandar Zulkarnain Ismawan Ismawan Ismawan Ismawan, Ismawan Iwan Setiawan Johanes Hutabarat Johanes Hutabarat Johannes Hutabarat K, Mohammad Fatahillah Pradana Kapid, Roebiyanto Kurnia Arfiansyah Kurnia Arfiansyah, Kurnia kurnio, Hananto kurnio, Hananto Lia Jurnaliah Lili Fauzielly M. Iqbal M. Iqbal Manwarjit, Manwarjit Marbun, Bonar Tua Halomoan Mayasari, Verna Mega F. Rosana, Mega F. Mega Fatimah Rosana Mega Fatimah Rosana Mega Fatimah Rosana Moeh. Ali Jambak Moeh. Ali Jambak, Moeh. Ali Moh. Heri Hermiyanto Zajuli Moh. Heri Hermiyanto Zajuli Muhamad Sapari Dwi Hadian Muhammad Kurniawan Alfadli Muhammad Zulfikar Muhammad Zulfikar Nana Sulaksana Nana Sulaksana Nana Suwarna Nana Suwarna Nana Suwarna Nanda Natasia Nazar Nurdin Noor Cahyo Dwi Aryanto Noor Cahyo Dwi Aryanto Novianti Wahyuni Purasongka, Novianti Wahyuni Nuarihidayah, Gilang Diesty Nugroho, Sigit Dwi Nuraini , Siti Paripurno, E. T. Petra Wattimury Prabowo, Arief Prasetio, Rasi Prasetio, Rasi Prasetya, Muhammad Nurul Huda Purnama Sendjaja Purnama Sendjaja Puspita, Ramelia Eka Rahmola, Wiryadi Rizkiputra Ralanarko, Dwandari Ramzis, Novaldo Rasi Prasetio Resesiyanto, Hastowo Reza Ardiansyah Reza Ardiansyah Rivaldy, Mohammad Rodriguez, Hilarius Roebyanto Kapid Ronaldo Irzon Ronaldo Irzon Ronaldo Irzon Rosana, Mega Fatimah Rosana, Mega Fatimah Rosana, Mega Fatimah Rusman Rinawan -, Rusman Rinawan Satrio Satrio Satrio, Satrio Satrio, Satrio Sendjaja, Purnama Sendjaja, Purnama Sendjaja, Purnama Shaska Zulivandama Shiddiq, Asep Mohamad Ishaq SUBAGJA, MUHAMAD AGAM Suci Sarah Andriany, Suci Sarah Sudradjat, A. Sudradjat, A. Sudradjat, Adjat Sudradjat, Adjat Sudrajat, Adjat Sugianto, Asep Sulaksana, Nana Suwarna, Nana Swasty Aninda Piranti Syaiful Alam Syaiful Bachri Tampubolon, Armin Taufan, Yoqi Ali Udaya Kamiludin Udi Hartono Udi Hartono Vijaya Isnaniawardhani Viqnoriva, S.N. Wahyu Sugiarto Wattimury, Petra Wiguna, Purwa Wilda Aini Nurlathifah Winantris Winantris Winarti Winarti Yan Rizal, Yan Yoga Andriana Sendjaja, Yoga Andriana Yogi Fernando, Yogi Yudi Darlan Yusriyah, Dzakiyah Zakaria, Firman Zarkasyi, Ahmad Zulfialdi Zakaria, Zulfialdi Zulkarnain, Iskandar ⠀, Abdurrokhim ⠀, Winantris