Claim Missing Document
Check
Articles

Statistical literacy comprehension of students in the context of covid-19 with Collaborative Problem Solving (CPS) Oktaviana Ainun Ratnawati; Tatag Yuli Eko Siswono; Pradnyo Wijayanti
Math Didactic: Jurnal Pendidikan Matematika Vol 6 No 3 (2020): September - Desember 2020
Publisher : STKIP PGRI Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33654/math.v6i3.1051

Abstract

Penelitian ini bertujuan untuk mendeskripsikan tentang pemahaman literasi statistika mahasiswa semester IV Universitas Palangkaraya pada konteks covid-19 dengan Collaborative Problem Solving (CPS). Metode penelitian yang digunakan adalah kualitatif. Penjelasan tersebut didasarkan dengan hasil penelitian yang telah dilakukan dengan cara pemberian masalah literasi statistika yang didiskusikan secara berkelompok dan wawancara. Empat mahasiswa yang dipilih dari 38 mahasiswa sebagai subjek penelitian merupakan 2 kelompok yang mempunyai anggota dengan kemampuan matematika yang berbeda. Kelompok I terdiri dari subjek berkemampuan tinggi dan sedang, sedangkan kelompok II terdiri dari subjek berkemampuan sedang dan rendah. Hasil analisis menunjukkan bahwa pemahaman literasi statistika keempat subjek berkemampuan tinggi, sedang, maupun rendah belum mampu untuk mencapai indikator menentukan klaim peneliti, dan merumuskan H0 dan H1 secara tepat.
Profil Kemampuan Berpikir Abstrak Siswa SMP dalam Memecahkan Masalah Matematika Ditinjau dari Adversity Quotient Dinda Putri Rubiyanti; Pradnyo Wijayanti
MATHEdunesa Vol 12 No 2 (2023): Jurnal Mathedunesa Volume 12 Nomor 2 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n2.p569-587

Abstract

Abstract thinking ability is a person’s ability of someone to represent problems in the form of mathematical models and relate them to concepts to find solutions to existing problems. The succes of students in solving problems also depends on intelligence of students in dealing with difficulties or Adversity Quotient (AQ). There are 3 types of AQ namely climber, camper, and quitter. The purpose of this research was to describe the profile of abstract thinking ability in grade VIII junior high school in solving problems in terms of AQ. The type of this research is qualitative descriptive research. The data sourch for this research were 3 students of class VIII-A at SMPN 54 Surabaya with different types of AQ and high mathematical abilities. The instruments used were Adversity Response Profile (ARP) test, abstract thinking ability test, and interview. The result showed that the profile of the climber student’s abstract thinking abilities in solving mathematical problem had reached the level of perceptual abstraction, internalization, interiorization, and second level of interiorization. The camper student’s abstract thinking abilities in solving mathematical problem had reached the level of perceptual abstraction, internalization, interiorization, and second level of interiorization although there are some drawbacks. The quitter student’s abstract thinking abilities in solving mathematical problem had reached the level of perceptual abstraction only.
Abstraksi Reflektif Siswa SMP dalam Menyelesaikan Masalah Matematika Ditinjau dari Kemampuan Matematika Bias Nadilia; Pradnyo Wijayanti
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p684-697

Abstract

Reflective abstraction is a process of reflection on previously learned concepts and applied to new situations. This study aims to describe the reflective abstraction of junior high school students in solving mathematical problems in terms of mathematical ability. The source of the data in this study were three male students of class VIII SMPN 20 Surabaya who had different mathematical abilities.The results of this study indicate that students with high mathematical abilities, at the recognition level, are able to remember and identify previous activities related to the problem at hand. At the representation level, students with high mathematical abilities are able to correctly translate information into mathematical models. At the level of structural abstraction, students with high mathematical abilities are able to solve problems correctly, try new ways, and overcome difficulties when solving problems. At the level of structural awareness, students with high mathematical abilities are able to provide arguments from the results of their answers and are able to solve further problems. Students with moderate mathematical abilities, at the introductory level are able to remember previous activities related to the problem at hand. At the representation level, students are able to correctly translate information into mathematical models. At the level of structural abstraction is able to solve the problem correctly. And at the level of structural awareness, students are able to solve new problems. Meanwhile, students with low mathematical abilities are unable to solve problems. Students with low mathematical abilities still have to be guided in the process of solving problems.
Keterampilan Berpikir Kritis Siswa SMP dalam Menyelesaikan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika Indan Afifah Rahmawati; Pradnyo Wijayanti
MATHEdunesa Vol 12 No 3 (2023): Jurnal Mathedunesa Volume 12 Nomor 3 Tahun 2023
Publisher : Program Studi S1 Matematika UNESA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v12n3.p720-733

Abstract

One of the important skills to be mastered by students is critical thinking skills. One way to bring up students' critical thinking skills is by confronting them with a problem. The context of the problem that is closest and can be recognized well by students is the context of daily life or is called contextual problem. This research is a qualitative descriptive study. The subjects of this study were three students of 8th grade at SMP Negeri 1 Kedunggalar with each student having high, medium and low mathematical abilities. The method of collecting data in this study is through tests of mathematical abilities, tasks of solving contextual mathematical problems, and interviews. The results showed that junior high school students had high, medium, and low math skills in clarification skills, namely students wrote down the information they knew about questions such as the size of tiles, the size of the library floor, and discounts. Students formulate the main problem, namely finding the cheapest price from a choice of two ceramics, with the concept used, namely the area of a square and a rectangle. In the assessment skills, students assess the information previously mentioned as sufficient to solve the problem and mention the relevance of the information to the completion step, namely the size of the tile area and the area of the library to determine the number of tiles needed. In inference skills, students with high and moderate mathematical abilities show a relationship of ideas related to the steps used, namely finding the number of ceramics, the total price, and the price after the discount. In strategy skills, students evaluate the steps used by reviewing the results of the completion that has been done. Meanwhile students with low mathematical abilities did not describe the relationship from the information known to the problem and could not evaluate the results of the solution.
Frieze Pattern on Shibori Fabric Ratih Puspasari; Setyo Hartanto; Mohamad Gufron; Pradnyo Wijayanti; Mega Teguh Budiarto
Jurnal Pendidikan Matematika IKIP Veteran Semarang Vol 6 No 1 (2022): Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang
Publisher : Urogram Studi Pendidikan Matematika, Universitas IVET

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31331/medivesveteran.v6i1.1904

Abstract

Mathematics and culture are two things that are closely related to the activities of daily human life. Because Mathematics is a form of culture that is integrated in all people's lives. This means that, in culture we can find various kinds of mathematical concepts called ethnomathematics. Shibori is a technique of manipulating cloth originating from Japan, to create patterns through a dyeing method that has been around since the 8th century. The patterns created in Shibori generally depict an asymmetrical shape. In the Shibori motif there are several mathematical elements, one of which is the Frieze Group pattern. The Frieze Group is a subgroup of a symmetry group that is constructed by translation in one direction. The Frieze pattern has 7 (seven) types of patterns consisting of isometric combinations and can be classified as cyclic or dihedral groups. This study is an ethnographic study, with exploration and documentation of Shibori. The data analysis technique chosen is interview, observation and documentation. The research subjects were Shibori fabric craftsmen in Tulungagung district, East Java. The purpose of this research is to further examine the cultural patterns of Shibori Traditional cloth into Frieze patterns, as a way to understand mathematics through culture. The results of the research conducted have shown that there are mathematical concepts (geometry) in the Shibori motif, namely the Frieze pattern F1, F2, F3, F5, F6, F7. Keywords: Group Frizes; Ethnomathematics; Shibori
Algebraic Thinking Profile of Junior High School Students with Reflective Cognitive Style in Solving Mathematics Problems Yusrina, Siti Laiyinun; Masriyah, Masriyah; Wijayanti, Pradnyo
Jurnal Riset Pendidikan dan Inovasi Pembelajaran Matematika Vol. 7 No. 1 (2023): JRPIPM SEPTEMBER 2023
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/jrpipm.v7n1.p75-84

Abstract

The differences in algebraic thinking when solving problems are determined by the characteristics of students. One of the distinguishing characteristics is cognitive style. The study aimed to describe the algebraic thinking profile of students who had reflective cognitive styles in solving mathematics problems. This study used descriptive qualitative research with a case study research design, focusing on 8th grade junior high school students with reflective cognitive style. Data were collected using tests and interviews. This study used three types of tests namely Matching Familiar Figure Test (MFFT) to determine students’ cognitive style, Mathematics Ability Test (AMT) to measure students' mathematical abilities, and Problem-Solving Test (PST) to obtain data related to students’ algebraic thinking profile in solving mathematics problems. Data were analyzed in three stages covering data reduction, data presentation, and conclusion drawing. The results showed that the algebraic thinking of students with reflective cognitive style in solving problems met the three aspects of algebraic thinking indicators namely performing activities to generalize the pattern and determine the next term of the given pattern, representing and comparing data in tabular form, and understanding the meaning of variables and use variables in the form of letters or symbols as a representation of something unknown value in algebraic form. Students with a reflective cognitive style in solving problems could understand the problems given well, be careful and thorough in writing the steps of completion, and straightforward and coherent in answering questions so that the answers given tend to be correct. Thus, the results of this study are expected to be one of the references for teachers or other researchers in developing mathematics learning by considering the cognitive style the students, especially reflective cognitive style.
Pengembangan Lembar Kerja Siswa (LKS) Matematika Braille Berbasis Masalah Dengan Bantuan Audio Untuk Meningkatkan Kemandirian Belajar Siswa Tunanetra Choirunisa Firda Haryanti; Pradnyo Wijayanti; Atik Winarti
Pi: Mathematics Education Journal Vol. 6 No. 2 (2023): Oktober
Publisher : Program Studi Pendidikan Matematika Universitas PGRI Kanjuruhan Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21067/pmej.v6i2.8363

Abstract

Penelitian pengembangan ini berupaya untuk menciptakan Lembar Kerja Siswa (LKS) matematika berbasis masalah yang valid, praktis, dan efektif dengan dukungan audio dalam rangka meningkatkan kemandirian belajar siswa tunanetra. Dalam penelitian ini, empat fase penelitian pengembangan 4D (Four-D Model) diterapkan pada proses pengembangan. Investigasi ini dilakukan di fasilitas SMPLB YPAB Surabaya. Partisipan penelitian adalah siswa kelas VII dengan kategori buta total. Penelitian ini menghasilkan informasi kualitatif dan kuantitatif. Penelitian ini mencakup data kualitatif proses pengembangan, saran penyempurnaan LKS matematika Braille berbasis masalah dengan dukungan audio, dan kemandirian belajar siswa tunanetra. Data penelitian kuantitatif ini mengkaji validitas, kegunaan, dan kemanjuran LKS matematika yang dirancang untuk siswa tunanetra. Penelitian ini menghasilkan LKS dengan tingkat validitas sebesar 85,71 persen dengan kategori sangat valid dan tingkat kepraktisan sebesar 88,39 persen dengan kategori sangat praktis. Kemanjuran LKS ditentukan melalui angket respon siswa tunanetra, yang menunjukkan rata-rata 89,58 persen siswa tunanetra menilai LKS sangat baik. Telah dibuktikan bahwa pembelajaran berbasis lembar kerja jauh lebih efektif dibandingkan pembelajaran tradisional dalam meningkatkan kemandirian belajar siswa tunanetra, dengan rata-rata N-gain sebesar 75,10%, yang merupakan nilai yang tinggi.
Pengembangan Lembar Kerja Siswa (LKS) Matematika Braille Berbasis Masalah Dengan Bantuan Audio Untuk Meningkatkan Kemandirian Belajar Siswa Tunanetra Choirunisa Firda Haryanti; Pradnyo Wijayanti; Atik Winarti
Pi: Mathematics Education Journal Vol. 6 No. 2 (2023): Oktober
Publisher : Program Studi Pendidikan Matematika Universitas PGRI Kanjuruhan Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21067/pmej.v6i2.8363

Abstract

Penelitian pengembangan ini berupaya untuk menciptakan Lembar Kerja Siswa (LKS) matematika berbasis masalah yang valid, praktis, dan efektif dengan dukungan audio dalam rangka meningkatkan kemandirian belajar siswa tunanetra. Dalam penelitian ini, empat fase penelitian pengembangan 4D (Four-D Model) diterapkan pada proses pengembangan. Investigasi ini dilakukan di fasilitas SMPLB YPAB Surabaya. Partisipan penelitian adalah siswa kelas VII dengan kategori buta total. Penelitian ini menghasilkan informasi kualitatif dan kuantitatif. Penelitian ini mencakup data kualitatif proses pengembangan, saran penyempurnaan LKS matematika Braille berbasis masalah dengan dukungan audio, dan kemandirian belajar siswa tunanetra. Data penelitian kuantitatif ini mengkaji validitas, kegunaan, dan kemanjuran LKS matematika yang dirancang untuk siswa tunanetra. Penelitian ini menghasilkan LKS dengan tingkat validitas sebesar 85,71 persen dengan kategori sangat valid dan tingkat kepraktisan sebesar 88,39 persen dengan kategori sangat praktis. Kemanjuran LKS ditentukan melalui angket respon siswa tunanetra, yang menunjukkan rata-rata 89,58 persen siswa tunanetra menilai LKS sangat baik. Telah dibuktikan bahwa pembelajaran berbasis lembar kerja jauh lebih efektif dibandingkan pembelajaran tradisional dalam meningkatkan kemandirian belajar siswa tunanetra, dengan rata-rata N-gain sebesar 75,10%, yang merupakan nilai yang tinggi.
Kemampuan Berpikir Analogis Siswa SMP dalam Menyelesaikan Masalah Matematika Elgiyan, Naili Fauziyah; Wijayanti, Pradnyo
MATHEdunesa Vol. 13 No. 2 (2024): Jurnal Mathedunesa Volume 13 Nomor 2 Tahun 2024
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v13n2.p630-640

Abstract

This study aims to describe students' analogical thinking abilities in solving mathematical problems. The subjects of this study were one fieldindependent cognitive-style student and one junior high school student from class VII.. The instruments used are analogical thinking ability test, and interview . The results of this study show that students in the coding stage did not write down the information in the questions on their answer sheets, however, they were able to explain during interviews. In the conclusion stage, students use methods that they consider easy and have used these methods before. In the mapping stage, students can identify the relationship between the source problem and the target problem during the interview, which can be seen from the similarity of the information known and asked. In the application stage students get conclusions from the solution to the source problem and target problem.
Strategi Pemecahan Masalah Matematika Siswa SMP Ditinjau dari Kemampuan Matematika Andriani, Danica Patricia; Wijayanti, Pradnyo
MATHEdunesa Vol. 13 No. 3 (2024): Jurnal Mathedunesa Volume 13 Nomor 3 Tahun 2024
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathedunesa.v13n3.p707-730

Abstract

Co-Authors ., LISNANI ABADI Abadi Abadi Aditama, Fauziyah Kartika Agung Lukito Ahmad Junaidi Hutama Putera Aina Saidah Aini, Rahmawati Nur Alvinaria Alvinaria Andriani, Danica Patricia ANGGI VATMIKE PUTRI, FEBBRYOLLA Anisa'a Faradilla Anwari, Nabilah Chairunisa Ardianzah, Mochamad Andy Atik Winarti Atik Wintarti, Atik Bias Nadilia Burhanudin Sugiyono, Aswin Cahyati, Vania Idelia Candra Ainur Rofiq Choirunisa Firda Haryanti Chyntia Dewi Puspita Rini Didik Suliswanto Dinda Putri Rubiyanti Dwi Juniati Dwi Juniati Dwi Juniati DWI VIDIA NINGSIH, SISKA Elgiyan, Naili Fauziyah Endah Budi Rahaju ENDANG SUSANTINI Faiq, Wang Achmad Althof FAJRIATI, MIRA Falah, Bintari Nur Faradilla, Anisa'a fathikhin, nurul Fiangga, Shofan Firdausa Yanuar GIGIH MAHARGA, YESAYAKA Gurit Wulan Jagadianti Halizah, Tsania Rahmah Ika Kurniasari Ika Kurniasari Ikka Ananda Hakiki Indan Afifah Rahmawati IRA IRZAWATI, IRA Irma Zahrotul Jamilah Ismail Ismail Ismail, Ismail Jagadianti, Gurit Wulan Khumairoh, Binta KUSUMA ANGGRAINI, RINI Manuharawati Maria Ulfa MASRIYAH Mawardi, Arnindia Via MAY MAHARENI, DINA Ma’rifah, Ummi Mega Teguh Budiarto Mirza Geraldine Mohamad Gufron Muchammad Khafith Octafian Purnomo Nikmarocha Nina Prihartiwi NUR HIDAYANTI, ALFI Nur Izzatul Isslamiyah Oktaviana Ainun Ratnawati Oktaviana Ainun Ratnawati Pakpahan, Milka Rosabella Marito Prasetyo Kurniawan PRIANGKA TANJUNG, MEYRNI Proboretno, Setyaning Purwadhani, Dea Annice Putera, Ahmad Junaidi Hutama Putri, Alifia Rachma Putri, Anggi Adelia Putri, Astrie Karina Putri, Cika Noviana Raden Sulaiman Rahmawati Nur Aini Rahmawati Nur Aini Rahmawati Nur Aini Ramadhani, Safira Putri Ratih Puspasari Renata Nurlaily Rowdlotul Jannah Reny Wahyuni Riky Prasetia Wijaya Rini Setianingsih Rini Setianingsih RUSLY HIDAYAH Setyo Hartanto Shofan Fiangga Siti Maghfirotun Amin Sopian Sugi Hartono Susanah Susanah Susanah Susanah Susanah Tatag Yuli Eko Siswono Tatag Yuli Siswono Toni Phibeta Wadhon Eka Shabrina YUNI SRI RAHAYU Yusril Rahmat Hidayat Yusrina, Siti Laiyinun Zhalsadilah Yuniar Kristanti