Claim Missing Document
Check
Articles

Optimasi Kompresi File Dengan Menggunakan Gabungan Metode Run-Length-Encoding (RLE), Shannon- Fano Dan Lempel-Ziv-Welch(LZW) Dian Eka Ratnawati; Marji -; Dewi Yanti Liliana
Jurnal POINTER Vol 2, No 1 (2011): Jurnal Pointer - Ilmu Komputer
Publisher : Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK Permasalahan yang penting dalam dunia teknologi informasi adalah bagaimana cara mengolah data dari informasi-infomasi yang semakin besar dan kompleks, sehingga lebih cepat, mudah, aman, dan efisien baik dalam proses penyimpanannya maupun transfer data. Salah satu cara agar transfer data bisa cepat adalah dengan melakukan kompresi data. Penyimpanan data kedalam  blok bertujuan untuk peningkatan kecepatan dan penghematan tempat penyimpanan[4].  Pada penelitian ini akan dilakukan kompresi terhadap setiap blok dengan  menggunakan metode Run-Length-Encoding (RLE), Shannon- Fano dan Lempel-Ziv-Welch(LZW). Rasio kompresi metode gabungan paling baik dibandingkan dengan ke-3 metode kompresi yang lain. Dari hasil penelitian, rasio kompresi metode Gabungan paling baik ada pada file access dilanjutkan dengan .bmp ,.txt, dan disusul .doc   Kata kunci: blok, Run-Length-Encoding (RLE) ,Shannon- Fano dan Lempel-Ziv-Welch(LZW)  ABSTRACT Issues that are important in the information technology is how to process data from informations that increasingly large and complex, making it fast, easy, secure, and efficient both in storage and data transfer process. One way for fast data transfer is to compress data. Storage of data into blocks aims to increase the speed and storage efficiency [4]. In this research, the compression of each block by using the Run-Length-Encoding (RLE), Shannon-Fano and Lempel-Ziv-Welch (LZW). The stages of research to be conducted in general is to perform design system, making software, carried out tests on the software, and the latter is to conduct an analysis of trial results. Compression ratio combination method is the best compared with  others compression methods. From the results of the study, the compression ratio is the best combination method on file access, followed by. bmp ,txt, and followed. doc   Keywords: blok, Run-Length-Encoding (RLE) ,Shannon-Fano dan Lempel-Ziv-Welch(LZW)
Komputasi Frekuensi Kebersamaan Data Berdasarkan Klaster Pembentuknya Marji -; Edy Santoso; Nurul Hidayat
Jurnal POINTER Vol 2, No 2 (2011): Jurnal Pointer - Ilmu Komputer
Publisher : Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

ABSTRAK Salah satu cara untuk mengetahui kemiripan rekord data adalah dengan klastering. Pada metode klastering, dengan jumlah klaster yang sama, antara metode yang satu dengan yang lain kemungkinan menghasilkan struktur klaster yang berbeda. Dengan adanya perbedaan struktur tersebut dimungkinkan dua buah rekord data dengan suatu metode klaster berada dalam suatu klaster, tetapi dengan metode yang lain berada pada klaster yang berbeda. Pada penelitian ini dikembangkan suatu algoritma yang dapat digunakan untuk mengetahui frekuensi rekord data berada dalam satu klaster. Metode klaster yang digunakan adalah k-means, kohonen, fuzzy cmean dan fuzzy substractive. Berdasarkan hasil klastering keempat metode tersebut, dikembangkan algoritma yang dapat digunakan untuk mengetahui frekuensi rekord data bersamaan dalam satu kluster. Data yang digunakan adalah data gen jamur yang dapat didownload pada alamat http://cmgm.stanford.edu/pbrown/  sporulation/ additional/   Kata kunci: klastering, k-means, kohonen, fuzzy cmean, fuzzy substractive ABSTRACT Clustering is a one of  the way to know similarity  among data records.  Sometime, different methods give a different cluster structure , although in  the same sum  of cluster.  So that, by using different methods,  it is possible 2 data  at the different structure.  For exampale , by using kmean, data -1 and data-2 in the same cluster, but by  kohonen, data-1 and data-2 in the  different cluster. In this researh, we developt algorithm that can be used to calculate frequency of data record at the same cluster.  The methods, we are used are kmean, kohonen, fuzzy cmean and fuzzy substractive. Based on those methods, we developt  algorithm that can be used to know frequency of data record at the same cluster. Data used in this research is fungi gen, that can be download at http://cmgm.stanford.edu/pbrown/ sporulation/ additional/   Keywords: clustering, kmean,kohonen, fuzzy cmean, fuzzy substractive
The Fuzzy Inference System with Least Square Optimization for Time Series Forecasting Samingun Handoyo; Marji Marji
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i3.pp1015-1026

Abstract

The rule base on the fuzzy inference system (FIS) has a major role since the output generated by the system is highly dependent on it. The rule base is usually obtained from an expert but in this study proposed the rule base generated based on input-output data pairs with generating rule bases using lookup table scheme, then consequent part of each rule optimized with ordinary least square(OLS), so finally formed rule base from model FIS Takagi-Sugeno orde zero. The exchange rate dataset of EURO to USD is used for the development and validation of the system. In this study, 12 FISs were developed from a combination of linguistic values of n = 3,5,7, 9 with the number of lag (k) assumed to have an effect on output for k = 2,3,5. In training data, values R2 ranged between 0.989 and 0.993, MAPE values ranged between 0.381% and 0.473% where the FIS with the combination of n = 9 and k = 5 has the best performance. In the testing data, values R2 ranged between 0.203 and 0.7858, MAPE values ranged between 0.5136% and 0.9457% where FIS n = 3 and k = 2 perform best.
RANCANG BANGUN DAN PELATIHAN SISTEM INFORMASI LABORATORIUM BAGI PENGELOLA LABORATORIUM PATOLOGI ANATOMI RS XYZ Supraptoa Supraptoa; marji; Edy Santoso; Dian Eka R; Nurul Hidaya; Kenty Wantri A
Prosiding Seminar Nasional Pengabdian Kepada Masyarakat Vol 2 (2021): PROSIDING SEMINAR NASIONAL PENGABDIAN KEPADA MASYARAKAT - SNPPM2021
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.614 KB)

Abstract

Abstract The use of information systems in the medical world strongly supports the activities/work of medical personnel in hospitals. The laboratory information system is an application program system that supports access to the database system. So that patient data can easily be stored, integrated and displayed again when needed and the resulting information is more accurate and reliable. In this service activity, the design and training of laboratory information systems is carried out. The design of the laboratory information system is carried out using the Waterfall system development method. The Waterfall method is a simple method in describing the stages of software development consisting of phases: analysis, design, coding, testing and maintenance. After designing the laboratory information system, training is carried out. The training activity consists of 2 materials: Training on data management systems and transaction reporting. The training was attended by 5 participants from the Anatomical Pathology Laboratory, XYZ Hospital. The implementation of the training went well, this can be seen from the average value of feedback from the participants, which was 4.83. Abstrak Penggunaan sistem informasi pada dunia medis sangat mendukung aktifitas/pekerjaan para tenaga medis di rumah sakit. Sistem informasi laboratorium merupakan sebuah sistem program aplikasi yang memberi dukungan akses ke sistem database. Sehingga data pasien dengan mudah dapat disimpan diintegrasikan dan ditampilkan kembali saat diperlukan dan informasi yang dihasilkan lebih akurat dan dapat dipercaya. Pada kegiatanpengabdian ini dilakukan rancang bangun dan pelatihan system informasi laboratorium. Rancang bangun pembuatan system informasi laboratorium dilakukan dengan metode pengembangan system Waterfall. Metode Waterfall merupakan metode yang sederhana dalam menggambarkan tahapan pengembangan perangkat lunak yang terdiri fase: analisis, desain, pengkodean, pengujian dan pemeliharaan. Setelah rancang bangun sistem informasi laboratorium, maka dilakukan pelatihan. Kegiatan pelatihan terdiri dari 2 materi yaitu: Pelatihan tentang sistem manajemen data dan pembuatan pelaporan tansaksi. Pelatihan diikuti 5 peserta dari Laboratorium Patologi Anatomi RS XYZ. Pelaksanaan pelatihan berjalan dengan baik hal ini dapat dilihat dari nilai rata-rata umpan balik dari peserta yaitu 4,83.
Penyelesaian Penjadwalan Flexible Job Shop Problem Menggunakan Real Coded Genetic Algorithm M Chandra Cahyo Utomo; Wayan Firdaus Mahmudy; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 1 (2017): Januari 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (635.876 KB)

Abstract

Scheduling is a problem that is quite difficult if it should be prosecuted in quick time and will be more troublesome if the arrangement is scheduled for something uncertain with many options that require a more complicated decision. Jobshop scheduling model is one example of scheduling problems that were encountered in the manufacturing industry. Completion of complex problem and the best solution can only be obtained by trying all possibilities. Genetic algorithm is one of algorithms which can provide complex solutions to problems within acceptable time rationally, so that it can be applied to the Flexible Job Shop problem. Genetic Algorithm is able to take into account by trying to exchange arrangements provided and/or try to replace the array directly (crossover and/or mutation).
Implementasi Algoritma Nearest Insertion Heuristic dan Modified Nearest Insertion Heuristic Pada Optimasi Rute Kendaraan Pengangkut Sampah (Studi Kasus: Dinas Kebersihan dan Pertamanan Kota Malang) Dea Widya Hutami; Wayan Firdaus Mahmudy; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 2 (2017): Februari 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.331 KB)

Abstract

Sebagai kota yang sedang tumbuh Kota Malang mengalami berbagai masalah, salah satu aspek yang sedang menjadi masalah kota adalah masalah kebersihan kota. Produksi sampah semakin tahun semakin meningkat seiring dengan peningkatan penduduknya. Oleh karena itu, dibutuhkan pengelolaan sampah yang efektif dan efisien terutama dalam hal pengangkutan sampah. Namun pengangkutan sampah di Kota Malang dirasa masih kurang karena belum adanya rute khusus untuk truk-truk pengangkut sampah, sehingga waktu yang dibutuhkan untuk mengangkut seluruh sampah dari 70 TPS ke TPA membutuhkan waktu dan biaya bahan bakar yang cukup boros. Dari perbandingan antara metode Nearest Insertion Heuristic dengan metode modifikasinya, menunjukkan bahwa metode Nearest Insertion Heuristic menghasilkan jarak yang lebih pendek. Hasil terbaik didapatkan apabila dari 35 truk pengangkut sampah, urutan jalan truk yang digunakan adalah 18 truk berkapasitas 8 m³ kemudian 17 truk berkapasitas 6 m³.
Pembangunan Aplikasi Mobile Augmented Reality untuk Rehabilitasi Terkilir pada Pergelangan Kaki Muhammad Indra Harjunada; Issa Arwani; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 4 (2017): April 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1012.415 KB)

Abstract

Physical exercise is an effective way to improve the welfare and quality of life. In modern society physical exercise is a must, not only to maintain health, but also as a means to rehabilitate from injuries. But it is inevitable that there is some risk that occurs during physical exercise can cause injuries such as bruises, sprains or even broken bones. More importantly, it was found that the knee and ankle are generally exposed to injuries, sprains and strains which proved with 949 cases for men and 194 for women. Despite the fact the physical rehabilitation can help recover from injury, but also very boring. This is mainly due to the exercise of no interest to most patients, and discomfort should be monitored through regular visits to a specialist. One effective way is to use a technology that provides visual feedback to the patient's proper exercise adequately, using Augmented Reality technology. This research will be built based augmented reality application designed to support therapy aims to help patients sprained ankle rehabilitation. This technology can run on android mobile devices, making it easier for patients to perform rehabilitation of a sprained ankle. From the results of tests performed acquired 80.9% average value of respondents' interpretation of 20 votes, which showed that the level of acceptance of the respondents said "Strongly Agree" to the rehabilitation of this AR technology.
Pelatihan Feedforward Neural Network Menggunakan PSO untuk Prediksi Jumlah Pengangguran Terbuka di Indonesia Bayu Septyo Adi; Dian Eka Ratnawati; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (794.323 KB)

Abstract

Open unemployment is a problem who faced by Indonesia in every year. In Indonesia, the number of an open unemployment is still in the high level. There are many factors influence the number of open unemployment, the one of that factor is the number of employement not comparable with the number of labor force. When the number of unemployment at the high level, it can influence the other sector, especially at the economy sector. Because of the number of unemployment is high, national income getting decrease and poorness getting increase. Prediction the number of open unemployment, can be expect to help government and other agence to decreasing the number of open unemployment in Indonesian. Feedforward Neural Network is model from artificial neural network which can be implemented for prediction. Backpropagation algorithm can be replaced by Particle Swarm Optimization Algorithm (PSO) for training Feedforward Neural Network . The result in this research, average value of error which is calculated by Average Forecast Error Rate (AFER) is 2.71399%. Based on value of AFER in this reaserch, Feedforward Neural Network trained by PSO method can be using for predicting the number of open unemployment in Indonesia with better accuracy.
Implementasi Algoritma Particle Swarm Optimization (PSO) untuk Optimasi Pemenuhan Kebutuhan Gizi Balita Leni Istikomah; Imam Cholissodin; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1207.22 KB)

Abstract

Toddlers are children with 1-5 years age range. According to Riskesdas, in the year 2007, 2010, and 2013 the percentage of cases of malnutrition tends to increase, especially in toddlers. In the fulfillment of nutrients, one type of food alone is not enough so it requires a variety of food ingredients that contain all the elements of nutrients. Efforts to improve child nutrition have been done by the government through Posyandu to monitor and provide more servants to toddlers. Nutrition needs of Indonesian people has been set in the guidelines of Pedoman Gizi Seimbang by the Ministry of Health Republic Indonesia, including nutritional guidelines to meet the nutritional needs of infants. However, the nutritional guidelines only provide the value of the nutrient content of each foodstuff, making it difficult for Posyandu staff to provide menu variations to fit the needs of children according to their health condition. In this research give recommendation of variation of foodstuff automatically by using optimization process of Particle Swarm Optimization algorithm so that it can facilitate Posyandu and parents of toddlers in providing daily food according to the nutritional needs of toddlers. Based on the test results, the most optimal parameter is the number of particles = 30, Wmin = 0.4, Wmax = 0.7, C1 = 2, C2 = 1.5, Number of iterations = 40 and Upper Limit Permutation number of 75 resulting in average energy, protein, fat and carbohydrate difference of 16.04%, -8.08%, 2.85% and 25.98% which can save parents toddlers by 28.56%.
Diagnosis Penyakit Kulit Pada Kucing Menggunakan Metode Modified K-Nearest Neighbor Made Bela Pramesthi Putri; Edy Santoso; Marji Marji
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 12 (2017): Desember 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (943.325 KB)

Abstract

Cats that are often act as pets to humans is not spared from diseases attack. Skin disease is a common disease suffered by these mammals, if not handled quickly and accurately then the disease can quickly escalate to interfere cat's activity or can even cause death. Early symptoms of skin diseases are sometimes not so visible and not so disturbing, therefore sometimes the cat evem looks fine so the owner is not so concerned. Very limited knowledge of the owner about skin diseases experienced by cats, as well as the many similarities of the symptoms of various skin diseases that are difficult to be identified by the common people became the main reason for the author to conduct research on the diagnosis of skin diseases in cats using the Modified K-Nearest Neighbor method. The Modified K-Nearest Neighbor Method is used for the classification of new data which class is not known based on the nearest k value. The dataset used in this study consisted of 240 cat skin disease data with 14 parameters and 5 different kind of skin diseases, the output of this system in the form of disease diagnosis. The highest accuracy that was obtained based on various testings is 100% at the value of k = 1. From the results of the accuracy, it can be concluded that the Modified K-Nearest Neighbor method can be implemented into the skin disease diagnosis system in cats.
Co-Authors Achmad Burhannudin Adam Hendra Brata Adhikari, Basanta Prasad Adhiyatma Mugiprakoso Afifah, Nadiyah Hanun Agi Putra Kharisma Agung Kurniawan Agustian, Moch. Alfredo Barta Ahmad Fauzan Rahman Ahmad, Baihaqi Aldy Satria Andika Harlan Andini Agustina Anita Sulistyorini Annisa Selma Zakia Ardhimas Ilham Bagus Pranata Arifin, Maulana Muhamad Asti Melani Astari Atika Anggraeni Audi Nuermey Hanafi Bagus Abdan Aziz Fahriansyah Bahruddin El Hayat Baihaq, Firda Barlian, Salwa Isna Bayu Rahayudi Bayu Septyo Adi Budi Darma Setiawan Budi Darma Stiawan Cahyo Adi Prasojo Candra Ardiansyah Choirul Anam Cindy Puspita Sari Cindy Rizki Amalya Dani Irawan Daud, Nathan Dea Widya Hutami Dewi Yanti Liliana Dian Eka R Dian Eka Ratnawati Djoko Kustono Dwi Yana Wijaya Dyva Agna Fauzan Edy Santoso Edy Santoso Edy Santoso Endang Wahyu Handamari Erwin Komara Mindarta Fanani, Erianto Fatih Kamala Nurika Gilang Ramadhan Gustian Ri'pi Hadi, Moch. Sholihul Handoyo, Samingun Hary Suswanto Hasan Ismail Ilham Romadhona Imam Cholisoddin Imam Cholissodin Imam Muda Nauri Imran Imran Indriati Indriati Indriati Indriati Issa Arwani Istiana Rachmi Istiqomah, Mutiara Titian Januar Dwi Amanda Jeffrey Simanjuntak Kenty Wantri A Kohei Arai Kurnianingtyas, Diva Lailatul Fitriah Lailil Muflikah Lailil Muflikhah Lailil Muflikkah Laily Putri Rizby Laksono Trisnantoro Leni Istikomah Liana Shanty Wato Wele Keaan Lilik Zuhriyah Lilis Damayanti Luthfi Faisal Rafiq M Chandra Cahyo Utomo M. Alfian Mizar Made Bela Pramesthi Putri Mahmudi, Wayan Firdaus Maududi, Affan Al Michael Adrian Halomoan Mochammad Pratama Viadi Mountaz, Lotu Muchammad Harly Muhamad Altof Muhamad Hilmi Hibatullah Muhammad Fakhri Mubarak Muhammad Hafidzullah Muhammad Indra Harjunada Muhammad Ramanda Hasibuan Muhammad Rizkan Arif Muhammad Robby Dharmawan Muhammad Tanzil Furqon Muhammad, Naufalsyah Falah Muzdalifah Yully Ayu Nonny Aji Sunaryo Nurul Hidaya Nurul Hidayat Nurul Hidayat Okvio Akbar Karuniawan P. P. S, Gladis Viona Pangestu, Wiyan Dwi Panji Prasuci Saputra Paryono Permadani , Anda Permatasari, Adelia Pratitha Vidya Sakta Prawidiastri, Firnadila Pricielya Alviyonita Rafely Chandra Rizkilillah Ratih Kartika Dewi Ratna Candra Ika Razaq, Hilal Nurfadhilah Retiana Fadma Pertiwi Sinaga Revinda Bertananda Riana Nurmalasari Ricky Irfandi Ricky Marten Sahalatua Tumangger Rizqi Addin Arfiansyah Rosalinda, Nadia Ryan Mahaputra Krishnanda Sabrina Hanifah Sari, Resti Novita Shinta Anggun Larasati Sri Wahyuni Sri Widyarti Sumarli Sumarli, Sumarli Supraptoa Supraptoa Supriyadi Supriyadi Sutrisno Sutrisno Swandy Raja Manaek Pakpahan Syarif Suhartadi Tahtri Nadia Utami Tawang Wulandari Tika Dwi Tama Usman Adi Nugroho Wayan Firdaus Mahmudy Wulandadi, Retno Yamlikho Karma Yayuk Wiwin Nur Fitriya Yuita Arum Sari Yusufrakadhinata, Muhammad Zulianur Khaqiqiyah