Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal on Advanced Technology, Engineering, and Information System (IJATEIS)

Online Store Product Recommendation System Using Collaborative Filtering and Content-Based Filtering Algorithms to Increase Sales Afandi, Yosi; Maskur, Maskur; Widyananda, Wahyu; Fiernaningsih, Nilawati; Budiarti, Lina; Az Zuhri, Fahmi Muhammad
INTERNATIONAL JOURNAL ON ADVANCED TECHNOLOGY, ENGINEERING, AND INFORMATION SYSTEM Vol. 4 No. 3 (2025): AUGUST
Publisher : Transpublika Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55047/ijateis.v4i3.2007

Abstract

This study aims to evaluate and compare the performance of two recommendation system approaches, namely Collaborative Filtering (CF) and Content-Based Filtering (CBF), in providing relevant product recommendations to users in an e-commerce context. The dataset used consists of 120 data including 90 relevant and recommended products (True Positive), 20 recommended but irrelevant products (False Positive), and 10 relevant but not recommended products (False Negative). Based on the calculation results, both methods show a precision value of 0.818 and a recall of 0.900. This means that approximately 81.8% of products recommended by the system are truly relevant, while 90% of the total relevant products are successfully recommended to users. The F1-score value obtained of 0.857 illustrates a good balance between the accuracy and completeness of the recommendations generated by the system. Furthermore, to measure the level of rating prediction error, the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) metrics are used. The evaluation results show that the CF method has an MSE value of 0.0784 and an RMSE of 0.28, while the CBF method shows an MSE of 0.0961 and an RMSE of 0.31. The lower RMSE value of CF indicates that this method has better accuracy in predicting user preferences than CBF. Overall, both methods show good performance with a low error rate. However, CF proved slightly superior in providing recommendations that match user preferences, so it can be used as a basis for developing smarter and more personalized recommendation systems on e-commerce platforms.
Co-Authors Achmad Zaini Afandi, Yosi Agung Madepo, Mahardika Ahmad Rizani, Ahmad Ahyuni, Destieka Andriansyah Andriansyah Annisa, Septina Nur Archie, Ananda Arninda, Arninda Ayu Sulasari Az zuhri, Fahmi Muhammad Benalda, Katya Camalia, Tamarine Chorisolekah, Adetia Darusman Darusman Dulbari Dulbari, Dulbari Erdiansyah, Imam Bustan Erlangga Andi Sukma Evelina, Tri Yulistyawati Fiernaningsih, Nilawati Hidayat Saputra, Hidayat Jaenudin Kartahadimaja Joni Dwi Pribadi Kartahadimadja, Jaenudin Khalida, Faaiza Soraya Kusumasasti, Ika Lova, Evy Fajriantina Madepo, Mahardika Agung Maharani, Juwita Suri Maharani, Nafa Putri Mahendra, I Gede Rio Maskur Maskur Maudya, Fatma Namira Maulidah, Salisa Medina Hidayat, Feridha Miftahul Sirat, Okta Miftahurohman, Muhammad Muhammad Agus Muljanto Musoffan, Rifky Achmad Mustain, Kun Narasuci, Win Natalia, Desmin Ni Siluh Putu Nuryanti Oktora, Yekie Senja Priyadi Priyadi Priyadi Priyadi Putra, Bobby Utomo Putri, Dinda Amalia Rahmadi, Rizky Rahpriangan, Desti Rasyad, Rizky Zakariyya Rena Feri Wijayanti Rena Feri Wijayanti Rochman, Fajar Samboro, Joko Sanita Dhakirah Sari, Miranda Ferwita Sari, Talitha Nabila Satwika, Fikri Razak Sembiring, Rinawati Septiawan, Fransiskus Dicky Simbolon, Novita Dong Mariris Sri Sulistyawati, Upik Subarjo Sugiri, Sherin Qothrunnadaa Syahputri, Wineke Ardhila Unarto, Tirto Utami, Alia Senja Utari, Amilia Ayu Jen Wahyu Widyananda Widyastuti, R.A Diana Wijayanti, Rena Fery Wulandari, Chofifah Laila Yulisa, Delma Yuriansyah