p-Index From 2021 - 2026
8.238
P-Index
This Author published in this journals
All Journal Publikasi Pendidikan JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Simantec Scan : Jurnal Teknologi Informasi dan Komunikasi Proceeding International Conference on Information Technology and Business Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Jurnal Informatika dan Teknik Elektro Terapan Jurnal Sistem Informasi dan Bisnis Cerdas Format : Jurnal Imiah Teknik Informatika Sistemasi: Jurnal Sistem Informasi InComTech: Jurnal Telekomunikasi dan Komputer J-Dinamika: Jurnal Pengabdian Kepada Masyarakat Journal of Information Systems and Informatics bit-Tech Journal of Robotics and Control (JRC) JATI (Jurnal Mahasiswa Teknik Informatika) Jifosi Indonesian Journal of Data and Science Nusantara Science and Technology Proceedings Jurnal Pengabdian Masyarakat Indonesia Jurnal Manajemen Informatika Jayakarta International Journal Of Computer, Network Security and Information System (IJCONSIST) Algoritme Jurnal Mahasiswa Teknik Informatika Literasi Nusantara Teknik: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Kohesi: Jurnal Sains dan Teknologi Jupiter: Publikasi Ilmu Keteknikan Industri, Teknik Elektro dan Informatika Router : Jurnal Teknik Informatika dan Terapan Modem : Jurnal Informatika dan Sains Teknologi Neptunus: Jurnal Ilmu Komputer dan Teknologi Informasi Mars: Jurnal Teknik Mesin, Industri, Elektro dan Ilmu Komputer Uranus: Jurnal Ilmiah Teknik Elektro, Sains dan Informatika Router : Jurnal Teknik Informatika dan Terapan
Claim Missing Document
Check
Articles

CONVOLUTIONAL NEURAL NETWORK DAN FASTER REGION CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI KUALITAS BIJI KOPI ARABIKA Pratama, Gede Ardi; Puspaningrum, Eva Yulia; Maulana, Hendra
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 3 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3.4887

Abstract

Industri kopi global sangat dipengaruhi oleh peran masyarakat pecinta kopi, yang menciptakan ekosistem dimana kopi tetap menjadi komoditas istimewa. Salah satu aspek penting dalam pengelolaan kopi adalah penentuan grade kopi. Standar penilaian cacat pada biji kopi telah diakui secara nasional sejak tahun 1984 dan diperbarui dengan SNI 01-2907-2008 untuk memastikan kualitas dan konsistensi. Untuk meningkatkan efisiensi dan akurasi proses grading kopi, diperlukan sistem otomatis berbasis deep learning. Penelitian ini membahas penerapan CNN dan Faster R-CNN untuk klasifikasi biji kopi, dengan menggunakan biji kopi arabika, robusta, dan liberica. Algoritma CNN VGG-16 dan Faster R-CNN dibandingkan untuk mengidentifikasi pengaruh Region Proposal Network (RPN) terhadap efisiensi klasifikasi citra. Hasil penelitian menunjukkan bahwa CNN VGG-16 mencapai akurasi 86%, sementara Faster R-CNN mencapai rata-rata akurasi 93%, dengan presisi 93%, recall 92%, dan skor F1 92%. Penelitian ini bertujuan untuk memberikan pemahaman mendalam tentang kedua algoritma dalam konteks klasifikasi biji kopi serta meningkatkan efisiensi proses grading kopi. Industri kopi global sangat dipengaruhi oleh peran masyarakat pecinta kopi, yang menciptakan ekosistem dimana kopi tetap menjadi komoditas istimewa. Salah satu aspek penting dalam pengelolaan kopi adalah penentuan grade kopi. Standar penilaian cacat pada biji kopi telah diakui secara nasional sejak tahun 1984 dan diperbarui dengan SNI 01-2907-2008 untuk memastikan kualitas dan konsistensi. Untuk meningkatkan efisiensi dan akurasi proses grading kopi, diperlukan sistem otomatis berbasis deep learning. Penelitian ini membahas penerapan CNN dan Faster R-CNN untuk klasifikasi biji kopi, dengan menggunakan biji kopi arabika, robusta, dan liberica. Algoritma CNN VGG-16 dan Faster R-CNN dibandingkan untuk mengidentifikasi pengaruh Region Proposal Network (RPN) terhadap efisiensi klasifikasi citra. Hasil penelitian menunjukkan bahwa CNN VGG-16 mencapai akurasi 86%, sementara Faster R-CNN mencapai rata-rata akurasi 93%, dengan presisi 93%, recall 92%, dan skor F1 92%. Penelitian ini bertujuan untuk memberikan pemahaman mendalam tentang kedua algoritma dalam konteks klasifikasi biji kopi serta meningkatkan efisiensi proses grading kopi. 
IMPLEMENTASI CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION DALAM PENGOLAHAN CITRA PADA ALGORITMA GENERATIVE ADVERSARIAL NETWORK Attaqwa, Syukur Iman; Puspaningrum, Eva Yulia; Saputra, Wahyu S.J.
Jurnal Informatika dan Teknik Elektro Terapan Vol. 12 No. 3S1 (2024)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v12i3S1.5316

Abstract

Pengolahan citra, terutama teknik peningkatan kontras seperti Contrast Limited Adaptive Histogram Equalization (CLAHE), berperan krusial dalam meningkatkan kinerja model Generative Adversarial Networks (GANs). Penelitian ini mengevaluasi dampak CLAHE pada akurasi klasifikasi gambar menggunakan GANs. Hasil penelitian menunjukkan bahwa penerapan CLAHE berhasil meningkatkan akurasi klasifikasi sebesar 20% dibandingkan dengan model yang tidak menggunakan CLAHE, mencapai akurasi sebesar 76,20%. Temuan ini mengindikasikan bahwa CLAHE efektif dalam meningkatkan kualitas data gambar, sehingga model GAN dapat belajar fitur-fitur yang lebih relevan dan menghasilkan output yang lebih akurat.
IMPLEMENTASI PROGRESSIVE WEB APPLICATION (PWA) DALAM PENGEMBANGAN SISTEM PESAN-ANTAR MAKANAN (STUDI KASUS: WIRAWIRI BOJONEGORO) Bimantara, Candra Kusuma Muhammad; Akbar, Fawwaz Ali; Puspaningrum, Eva Yulia
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 2 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i2.6132

Abstract

Layanan pesan-antar makanan daring mengalami pertumbuhan pesat seiring dengan kemajuan teknologi dan perubahan gaya hidup modern. Salah satu layanan lokal, WiraWiri Bojonegoro, menawarkan jasa pesan-antar makanan dengan menggandeng UMKM dan PKL sebagai mitra. Namun, sistem saat ini masih bergantung pada WhatsApp untuk pemrosesan pesanan dan pemilihan driver secara manual, sehingga mengakibatkan antrian panjang dan kurang efisien. Untuk mengatasi masalah ini, penelitian ini mengembangkan sistem pesan-antar makanan mengimplementasikan Progressive Web Application (PWA). teknologi PWA menghadirkan pengalaman pengguna yang responsif, cepat, dan dapat diakses baik online maupun offline. Pada penelitian ini di dapat sistem pesan antar berbasis Progressive Web Application (PWA) dengan menerapkan push notification, serta kemampuan menambahkan aplikasi ke layar utama (home screen). Secara keseluruhan, fitur-fitur pada sistem pesan-antar berfungsi dengan baik berdasarkan hasil pengujian fungsionalitas.
KLASTERISASI MAHASISWA MAGETAN MENGGUNAKAN K-MEANS UNTUK OPTIMASI STRATEGI PROMOSI PERGURUAN TINGGI Aqsa Prima Cahya; Muhammad Asyraf; Yudhistira Nanda Kumala; Eva Yulia Puspaningrum
JIFOSI Vol. 6 No. 1 (2025): Smart Systems and Data-Driven Approaches in Business and Technology
Publisher : UPN "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/jifosi.v6i1.478

Abstract

Semakin bertambahnya tahun, data mahasiswa magetan akan terus bertambah hingga menghasilkan tumpukan data yang berlimpah. Perlu adanya pengolahan data sehingga tumpukan data tersebut dapat dimanfaatkan sebagai ladang informasi. Penelitian ini bertujuan untuk mengkluster data mahasiswa Kabupaten Magetan yang sedang berkuliah di Universitas yang ada di Surabaya melalui proses data mining dengan algoritma K-Means serta metode Elbow dan Silhouette Coefficient dalam pembentukan clusternya. Data atribut yang digunakan pada penelitian ialah nama, asal sekolah, dan juga universitas. Data bersumber dari mahasiswa sendiri melalui pengisian google form oleh Organisasi Ikatan Mahasiswa Magetan di Surabaya, dimana data yang digunakan merupakan data mahasiswa angkatan 2023 dan 2024 dengan total sampel data sebanyak 250 items. Setelah melakukan perhitungan dengan metode Elbow didapatkan jumlah cluster sebanyak 4. Kemudian dilakukan evaluasi menggunakan metode Silhouette Coefficient dan didapatkan rata-rata terdekat dari nilai 1 adalah cluster 2, dengan nilai 0,62. Karena kohesivitas yang lebih baik serta model yang lebih sederhana, hasil cluster yang paling optimal adalah sebanyak 2 cluster pada epoch ke-5 dengan cluster 1 sebanyak 65 items, dan cluster 2 sebanyak 160 items. Adanya penelitian ini diharapakan dapat membantu universitas yang ada di Surabaya untuk menunjang strategi promosi berdasarkan hasil cluster universitas yang banyak diminati dari masing-masing sekolah di Kabupaten Magetan.
Studi Performa TF-IDF dan Word2Vec Pada Analisis Sentimen Cyberbullying Ahmad Hilman Dani; Eva Yulia Puspaningrum; Retno Mumpuni
Router : Jurnal Teknik Informatika dan Terapan Vol. 2 No. 2 (2024): Juni : Router: Jurnal Teknik Informatika dan Terapan
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/router.v2i2.76

Abstract

On August 14, 2023, Indonesia had approximately 228 million social media users, a number that is expected to continue growing to reach 267 million by 2028. Social media can be used to spread both positive and negative information, and one of the various negative effects is cyberbullying. Consequently, much research is conducted in the field of machine learning to develop sentiment analysis. One crucial step in sentiment analysis is word weighting. The two most common word weighting methods are TF-IDF and Word2Vec. These methods can be compared to determine which one produces better classification results, allowing cyberbullying sentiments on social media to be detected more accurately. Based on nine test scenarios, the final results showed that TF-IDF performed better than Word2Vec in this study, with an accuracy of 84%.
Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Identifikasi Penyakit pada Tanaman Jeruk Berdasarkan Citra Daun Abiyan Naufal Hilmi; Eva Yulia Puspaningrum; Henni Endah Wahanani
Router : Jurnal Teknik Informatika dan Terapan Vol. 2 No. 2 (2024): Juni : Router: Jurnal Teknik Informatika dan Terapan
Publisher : Asosiasi Riset Teknik Elektro dan Informatika Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62951/router.v2i2.78

Abstract

The development of image processing technology today can create systems that are able to effectively recognize digital images, one of which is in the field of agriculture for plant disease identification. Citrus plants experience a decrease in productivity due to pathogen attacks on leaves such as Black Spot, Cancer, and CVDP so that disease identification is needed. The classification method that can be used to classify images is the K-Nearest Neighbor (K-NN) algorithm because it is simple and has high accuracy in image management. This study aims to implement and determine the performance of the K-NN algorithm in identifying citrus plant diseases based on leaf images. This research uses a dataset from the Kaggle website of 1,096 images. There are 12 research scenarios using the comparison between test data and training data as much as 4, namely (90% training data + 10% test data, 80% training data + 20% test data, 70% training data + 30% test data, 60% training data + 40% test data) and testing with 3 random state values (42, 32, 22). The results showed that the K-NN algorithm is very effective in identifying citrus plant diseases with the highest accuracy value in the 90% training data scenario and 10% test data with a value of K = 2 which is 98.5%.
Co-Authors Abiyan Naufal Hilmi Achmad Junaidi Adityawan, Firza Prima Adyani, Adelia Putri Agung Mujiono, Alfinas Agung Mustika Rizki Agung Mustika Rizki, Agung Mustika Ahmad Fahry Hamidy Ahmad Hilman Dani Akbar, Fawwaz Ali Al Danny Rian Wibisono Ali Muhhamad Saleh Baaboud Andhika Ahnaf Daniswara Andreas Nugroho Sihananto Annisaa Sri Indrawanti Anny Yuniarti Aqsa Prima Cahya Ariani, Dian Dwi Ariyono Setiawan Aryananda, Rangga Laksana Aswan Aswan Attaqwa, Syukur Iman Az-Zahro', Syaikhhanun Nabila Azizah, Nabila Wafiqotul Bagus Sutikno Putra Basuki Rahmat Basuki Rahmat Basuki Rahmat Masdi Siduppa Bimantara, Candra Kusuma Muhammad Budi Nugroho Budi Nugroho Budi Nugroho Budi Nugroho Chafid, M Putih Devan Cakra Mudra Wijaya Dewi, Deshinta Arrova Dhian Satria Yudha K. Dimas Saputra Diyasa, I Gede Susrama Mas Dwi Anggraeni, Shinta Dwiki Aditama Supangkat Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha, Eka Elzandy, Imeldha Etniko Siagian, Pangestu Sandya Fahmi Al Hafidz, Achmad Fara Disa Durry Faris Syaifulloh Farkhan, Farkhan Fetty Tri Anggraeny Firza Prima Adityawan Fitri Rahmawati Hapsari Wiji Utami Hasby Bik, Ahmad Henni Endah Wahanani Humairah, Sayyidah Humam Maulana Tsubasanofa Ramadhan I Gede Susrama Mas Diyasa I Gede Susrama Mas Diyasa I Nyoman Sujana I Wayan Alston Argodi Idhana, Ilham Ainur indrawanti, annisaa sri Karim, Mohammad Daniel Sulthonul Kartini Kartini Lestari, Kusmiyati Lina Nurlaili, Afina M. Syahrul Munir, M. Syahrul Mada Lazuardi Nazilly Made Hanindia Prami Swari Manggala, Herwantoro Arya Marchel Adias Pradana Mas Diyasa, I Gede Susrama Mas Diyasa, I Gede Susrama Susrama Maulana, Hendra Merdin Risalul Abrori Moch. Hatta Mohammad Idhom Muhammad Asyraf Muhammad Fernanda Naufal Fathoni Muhammad Misbachuddin Muhammad Muharrom Al Haromainy Muhammad Syafril Hidayat Nabilah, Qonitah Jihan Nanik Suciati Noor Fitria Azzahra Nugroho, Budi Nugroho, Budi Nugroho, Budi Nurcahyo, Syai'in Bayu Nurul Taukid, Mochamad Pallawabonang, Mahabintang Pratama Wirya Atmaja Pratama, Gede Ardi Prisheila Dharmawan, Diaz Putra, Chrystia Aji Putra, Riza Satria Putri, Desya Ristya Retno Mumpuni Rizqi Mar'atus Sholiihah, Eka Royan Fajar Sultoni S J Saputra, Wahyu Safira, Dwi Putri Salsabilah, Andini Fitriyah Samuel Krispama Lumbantoruan Saputra, Raka Aji Saputra, Wahyu S J Saputra, Wahyu S J Saputra, Wahyu S. J. Saputra, Wahyu S.J. Satria Yudha Kartika , Dhian Shawn Hafizh Adefrid Pietersz Shofiya Syidada Sukendah, Sukendah Surjohadi, Surjohadi Susrama Mas Diyasa, I Gede Syahrul Hidayat Syaifullah JS, Wahyu Taruna Ardianto Tataq Distasianto Utami, Hapsari Wiji Vita Via, Yisti Wafiqotul Azizah, Nabila Wahyu Caesarendra Wahyu Dwi Lestari Wahyu S.J. Saputra Wahyu Syaifullah Jauharis Saputra Wan Awang, Wan Suryani Wan Suryani Wan Awang Wiji Utami, Hapsari Yisti Vita Via Yisti Vita Via Yogie Wilvren Saragih Yudha K., Dhian Satria Yudhistira Nanda Kumala YUSMI NUR AINI Zacky Yaser Malik Gumiwang ZAMAZANI, ZAIN MUZADID Zuhriyah, Sitti