Claim Missing Document
Check
Articles

KARAKTERISASI STRUKTUR NANO KARBON DARI LIGNOSELLULOSA Gustan Pari; Adi Santoso; Djeni Hendra; Buchari; Akhirudin Maddu; Mamat Rachmat; Muji Harsini; Teddi Heryanto; Saptadi Darmawan
Jurnal Penelitian Hasil Hutan Vol. 31 No. 1 (2013): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2013.31.1.75-91

Abstract

The science advancement in this century is such that in the future it will enter the nano technology. More specifically in the forest products field, the nano technology that can be developed is among others nano carbon derived from lignocelulosic stuffs. In relevant, this research aims to provide information and technology on the charcoal processing from lignocellulosic stuffs into nano carbon. The lignocellulosic stuffs used in this research consisted of teak wood and bamboo, further carbonized into charcoal at 400-500°C using drum kiln. The resulting charcoal was examined of its physical and chemical properties, crystalinity degree and dielectric characteristics, and then purified by re-carbonizing it at 800°C for 60 minutes. Prior to the purification, the charcoal sustained the doping (intercalation) process with Zn, Ni and Cu metals each respectively. After the purification, the charcoal was ground to very tiny particels using HEM (high energy machine) device for 48 bours. In this way, the charcoal with high crystalinity was yielded, and further sintered using spark plasma at 1,300 C into the nano carbon. The qualities and structure of all the resulting carbon (carbonized charcoal, re-carbonized charcoal, intercalated charcoal and sintered nano carbon) were evaluated using nano scale device (Py-GCMS, SEM-EDX and XRD), and examined as well of their dielectric characteristics. In turns out that the best quality charcoal was obtained from teak wood charcoal carbonized at 800°C, intercalated with Ni atoms at the ratio 1:5. The resulting charcoal afforded high crystalinity (78.98%), low electric resistance (0.17 2), and high conductivity 175.52 2'm Qualities of the corresponding nano carbon (after sintering) were such that its crystalinity spectaculary reached 81.87%, resistance (R) 0.01 & with very bigh conductivity 1067.262'm'. The nano carbon that resulted seems favorably prospective for bio-censor, bio-battery, and bio-electrode. Accordingly futher related research deserves carrying out.
KUALITAS PAPAN LAMINA DENGAN PEREKAT RESORSINOL DARI EKSTRAK LIMBAH KAYU MERBAU Adi Santoso; Gustan Pari; Jasni
Jurnal Penelitian Hasil Hutan Vol. 33 No. 3 (2015): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2015.33.3.253-260

Abstract

Polyphenol chemical components extracted from merbau (Intsia spp.) wood exhibit a strong affinity for resorcinol and formaldehyde in alkaline conditions, forming a copolymer that could serve as an adhesive. This paper studies the use of resorcinol adhesives from merbau wood extracts containing poly phenolics which copolymerize with formaldehyde bonding wood laminates. Results show that copolymer of merbau extracts with formaldehyde could produce resin with molecular weight 49,658. The resin can be used as adhesive for laminated board manufacturing of a 3 ply-1 strip flooring parquet constructed with 7 wood species, i.e: sungkai, karet, kempas, merbau, mangium, mahoni and sengon. Bonding quality and physical-mechanical properties of the products laminated meet the same product that glued using imported adhesive and included exterior quality with E₀ or F**** types of low emission formaldehyde.
SIFAT FISIS DAN MEKANIS PAPAN UNTAI BERARAH DARI BAMBU TALI ( (J.A. & J.H. Schultes) Kurz) Gigantochloa apus I.M. Sulastiningsih; Dian Anggraini Indrawan; Jamal Balfas; Adi Santoso; Mohammad Isa Iskandar
Jurnal Penelitian Hasil Hutan Vol. 35 No. 3 (2017): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2017.35.3.197-209

Abstract

Bamboo is potential as an alternative material to substitute wood. This paper examines the effects of using different resin contents and strand dimensions on the properties of its oriented strand board (bamboo OSB). Tali bamboo (Gigantochloa apus (J.A. & J.H. Schultes) Kurz) was used as raw material in manufacturing the bamboo OSB. Laboratory scale oriented bamboo strand boards were fabricated using each bamboo strand length (7.5, 10, and 15 cm) and glued with liquid phenol formaldehyde adhesive at various resin contents (6, 7 and 8%) of the bamboo strands dry 3 weight. Results show that the average density of fabricated bamboo OSB was 0.75 g/cm . Physical and mechanical properties of bamboo OSB were significantly affected by resin content, except the modulus of elasticity (MOE). Higher resin content gave better physical and mechanical properties of the boards. MOE of bamboo OSB was also significantly affected by the strand length. The longer strand dimension produces boards with higher MOE values. All oriented bamboo strand boards studied meet the Indonesian and Japanese Standard requirements of type 24 particleboard and also meet the British Standard requirements of both Type OSB/2 and Type OSB/3.
SIFAT PAPAN PARTIKEL DAUR ULANG RENDAH EMISI FORMALDEHIDA Adi Santoso; Gustan Pari
Jurnal Penelitian Hasil Hutan Vol. 33 No. 1 (2015): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2015.33.1.1-10

Abstract

Formaldehyde emission and physical-mechanical properties of particleboard bonded with urea formaldehyde (UF) could have negative effects on human health, specially when used in a room with limited ventilation. To reduce formaldehyde emission, an adsorbent can be added into adhesive mixture. This report describes the effect of imposing active charcoal into urea formaldehyde adhesive in terms of formaldehyde emission, physical-mechanical changes and economic aspect of the recycled particleboard. Results showed that the addition of active charcoal in particleboard production significantly changed the product properties. The charcoal addition as much as 3% to the UF adhesive could reduce formaldehyde emission and improve physical-mechanical properties of particleboard, and meet the Indonesian and Japanese Standards. The addition of active charcoal into particleboard is financially feasible.
KUALITAS HARDBOARD DUA JENIS BAMBU DENGAN TAMBAHAN TANIN RESORSINOL FORMALDEHIDA Dian Anggraini Indrawan; I.M. Sulastiningsih; Rossi Margareth Tampubolon; Gustan Pari; Adi Santoso
Jurnal Penelitian Hasil Hutan Vol. 35 No. 1 (2017): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2017.35.1.29-42

Abstract

All kinds of ligno-cellulose fiber stuffs are technically suitable for hardboard manufacture. In Indonesia, currently the available conventional ligno-cellulose fibers (esp. tropical natural-forest woods) become scarce and depleted. Meanwhile, domestic fiberboard-production is lower than its demands. Alternative fibers, abundantly potential and largely still unutilized, should be introduced, e.g. bamboo. Research on bamboo utilization for hardboard has been carried out using two bamboo species i.e. tali bamboo (Gigantochloa apus) and ampel bamboo (Bambusa vulgaris). Each bamboo species was pulped using open hot-soda semi-chemical process. Five proportions of bamboo pulp mixtures were prepared from tali-bamboo pulp and ampel-bamboo pulps i.e: 100%+0%, 75%+25%, 50%+50%, 25%+75%, and 0%+100%. Tannin-resorcinol-formaldehyde (TRF) adhesive was added to each bamboo pulp mixtures at three different resin contents, i.e. 0%, 6% and 8% based on dry weight of the bamboo pulp mixture. Bamboo hardboards were manufactured using wet forming process and the resulted boards were then tested for their physical and mechanical properties. Results showed that addition of TRF (up to 8%) improved hardboard properties. Hardboard made from the ampel-bamboo pulp (100%) produced the highest hardboard quality, as its properties mostly conform with the standards (JIS and ISO) requirements for density, modulus of elasticity (MOE), modulus of rupture (MOR) and internal bond (IB); while hardboards made from tali-bamboo pulp (100%) possessed the lowest quality. Hardboard from tali-bamboo pulp and ampel-bamboo pulp mixture (at 50%+50% and 25% + 75% proportions) afforded the second and third performances. The least prospective tali-bamboo pulp (100%) could expectedly be improved by using more TRF.
KARAKTERISTIK EK TRAK KULIT KAYU MAHONI SEBAGAI BAHAN PEREKAT KAYU Adi Santoso; Abdurachman
Jurnal Penelitian Hasil Hutan Vol. 34 No. 4 (2016): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2016.34.4.269-284

Abstract

Currenty, raw and supporting materials for adhesives industry such as NaOH, NH OH and methanol are available 4 in the domestic market, while raw material such as phenol and resorcinol derived from petroleum are reduced significantly, then, the use of raw material from other natural resources, like tannins derived from the tree bark is potentially developed. This paper explores and characterizes adhesive raw materials from mahogany bark (Swietenia mahagoni Jacq.) as phenolic source and tapioca as a source of carbohydrates. This paper also studies the copolymerization reaction between mahogany tannin extract with formaldehyde, as well as their mixtures with tapioca for adhesive application and its gluing quality. Pieces of mahogany barks were cut into chips measuring of approximately 2 x 1 x 0.1 cm, then soaked in o an extractor containing of hot water (70-80 C) with a ratio of bark chips : water = 1: 3. Extraction was undergone for three hours with continuous stirring before the mixture was cooled and filtered. The chip bark residue was repeatedly extracted using the same procedure for the second cycle. The obtained filtrates were then mixed with the first one and divided into two parts: crystallized in a water bath and the other part was used for adhesive manufacture. The results showeed that tannin extracted from the bark of mahogany was a dark reddish brown in colour similar with that of phenolic compounds with viscosity of 1.04 poise, specific gravity of 1.02 and the degree of acidity (pH) of 4.0. Extraction of mahogany bark yielded 8.10 % extract, with an average solid content of 2.01%, phenolic compounds level of 6,9%, and distribution of molecular weights ranging from 44-658. The optimum adhesive formulation of the extract mahogany bark was the mixture using of 0.25 mol of technical resorcinol with 15% tapioca, 1 mol technical formalin and 4% catalyst (NaOH 40%) of the total adhesive weight.
PENGARUH KOMPOSISI ARAH LAPISAN TERHADAP SIFAT PAPAN BAMBU KOMPOSIT I.M. Sulastiningsih; Surdiding Ruhendi; Muh. Yusram Massijaya; Wayan Darmawan; Adi Santoso
Jurnal Penelitian Hasil Hutan Vol. 32 No. 3 (2014): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2014.32.3.221-234

Abstract

The objective of this study was to determine the effect of layer orientation composition on the properties of bamboo composite lumber (BCL). Bamboo strips for BCL fabrication were prepared from mature culms (± 4 years old) of andong bamboo (Gigantochloa pseudoarundinacea (Steudel) Widjaja) collected from private gardens in West Java. The strips were pre-treated by soaking it in 7% boron solution for 2 hours. Five-layer BCLs were manufactured with 4 different compositions of layer orientation. The BCL was manufactured using water based polymer-isocyanate (WBPI) adhesive. The glue spread and cold pressing time applied were 250 g/m² and 45 minutes, respectively. Results showed that the average density, moisture content, thickness swelling, and width expansion of BCL were 0.79 g/cm³, 12.60%, 2.38%, and 1.13%, respectively. No delamination occurred in all samples using WBPI adhesive, which indicating high bonding quality. The average bonding strength (dry test) of BCL was 70.4 kg/cm². The physical and mechanical properties of BCL were significantly affected by layer orientation composition. The mechanical properties of BCL decreased as the number of cross-layer increased in the BCL structure. On the contrary, the present of cross-layer in BCL structure increased dimensional stability of the produced BCL.
POTENSI STRUKTUR NANO KARBON DARI BAHAN LIGNOSELULOSA KAYU JATI DAN BAMBU Gustan Pari; Adi Santoso; Djeni Hendra; Buchari; Akhirudin Maddu; Mamat Rachmat; Muji Harsini; Teddi Her anto; Saptadi Darmawan
Jurnal Penelitian Hasil Hutan Vol. 34 No. 4 (2016): Jurnal Penelitian Hasil Hutan
Publisher : BRIN Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20886/jphh.2016.34.4.309-322

Abstract

Nanotechnology research in the realm of forest products can be exploited from lignocellulose into nano carbon. The research was aimed to provide the potency of nano carbon structure from lignosellulose as bioenergy or biosensor material. O The materials of teak wood and bamboo were carbonized into charcoal at 400-500 C followed by activation using O chemical and physical processes at 800 C for 60 minutes. This process produced charcoal with high crystalinity and surface area. After purification and activation, the activated charcoal was subsequently doped process with Zn and Ni metals which O then followed by sintering using spark plasma at 1300 C. The qualities and structure of all the resulting carbon were evaluated using nano scale devices i.e. Pyrolysis Gas Chromatography Mass Spectrometer, Scanning Electron Microscope Energy Diffraction X-ray Spectrometer, X-ray Diffractometer, I-V meter and potensiometer. Results showed that the best activated charcoal produced from the chemical-physical activation (KOH steam) possessed high fixed carbon of 84.29%; 2 surface area of 850.5 m /g, crystallinity of 38,99% and resistancy of 0.10. The teak activated charcoal which intercalated by Ni at ratio of 1:5 produced the best properties with crystallinity degree of 73.45% and conductivity of 433.86 S/m. The sintered teak activated charcoal had crystallinity degree of 78.29% with I-V meter pattern in sigmoid shape and the potentiometer response formed a slope approaching the Nerst factors. Nano carbon produced from lignocellulose is a semiconductor and more suitably use for biosensors, particularly the one derived from teak wood.