Claim Missing Document
Check
Articles

Klasifikasi Tinggi Badan Menggunakan Metode Mask R-CNN Permana Sanusi, Amadea; Fariza, Arna; Setiawardhana
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3348

Abstract

Tinggi badan adalah parameter penting saat memasuki sebuah wahana. Penggunaan alat keselamatan saat bermain wahana permainan tidak akan maksimal jika wisatawan tidak memiliki tinggi badan yang sesuai dengan kriteria untuk memasuki wahana tersebut. Dalam penerapannya, seleksi wisatawan yang diperbolehkan masuk ke dalam wahana permainan masih menggunakan pengukuran tinggi badan secara manual. Penelitian ini bertujuan untuk mengurangi resiko terjadinya kecelakaan pada kendaraan dengan mengklasifikasikan dan mengimplementasikan sistem otomasi menggunakan pendekatan deep learning. Penggunaan deep learning yang berkembang saat ini dapat digunakan untuk mengklasifikasikan pengunjung. Penelitian ini mengusulkan proses klasifikasi tinggi badan menggunakan metode Mask R-CNN yang dapat digunakan untuk melakukan klasifikasi lebih dari satu orang, sehingga mempercepat antrean wisatawan pada wahana permainan. Hasil pengujian menunjukkan bahwa model Mask R-CNN yang dibangun berhasil mengklasifikasikan objek dengan memberikan bounding box, masking, dan label yang sesuai dengan objek. Membangun model Mask R-CNN sangat dipengaruhi oleh variatif gambar pada dataset dan proses anotasi gambar di dalam dataset. Evaluasi model menunjukkan hasil perhitungan mAP yang didapatkan sebesar 71%. Penelitian ini telah memenuhi tujuan utama dalam penelitian karena model Mask R-CNN berhasil melakukan klasifikasi yang sesuai.
Classification of flood disaster level news articles using Machine Learning Rahmad Santosa; Arna Fariza; Firman Arifin
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3646

Abstract

Floods have a significant socio-economic impact on Indonesian society. Much of this information is sourced from online news articles and social media. This research investigates whether the Support Vector Machine (SVM) method can be used for flood disaster level classification (low, medium, and high). Our methodology involves preparing data extracted from textual news articles on the National Disaster Management Agency (BNPB) website on the topic of flooding. We then labeled the data according to Regulation No. 02/2012 on general guidelines for disaster assessment and used the Support Vector Machine (SVM) method. Training and testing were conducted using different datasets, followed by accuracy and error evaluation. In addition, we considered the performance comparison of SVM with other classification methods, including Decision Tree, Naive Bayes, Adaboost, Random Forest, and Xgboost. The experimental results show that SVM still does not get good accuracy results for flood disaster level classification. The SVM accuracy level result of (52%) is still low compared to Random Forest (78%), and Xgboost (68%). Further research is expected to increase the accuracy of SVM for flood level classification.
Pembuatan Aplikasi Sistem Informasi Manajemen Keuangan dan Pendataan Warga Rukun Tetangga di Desa Plosorejo Kabupaten Blitar Berbasis Website: Making a Website-Based Website-Based Application for Financial Management Information Systems and Data Collection for Neighborhood Residents in Plosorejo Village, Blitar Regency Mohammad Robihul Mufid; Pratama, Chrysna Ardy Putra; Fariza, Arna; Yunanto, Andhik Ampuh; Damastuti, Fardani Annisa; Aditama, Darmawan; Basofi, Arif; Mawaddah, Saniyatul; Ikawati, Yunia; Majid, Nur Syaela
Jurnal Pengabdian pada Masyarakat Ilmu Pengetahuan dan Teknologi Terintegrasi Vol. 7 No. 1 (2022): December
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jindeks.v7i1.365

Abstract

Sebagai bentuk pemerintahan terkecil RT melakukan berbagai fungsi tersebut seperti pelayanan administrasi keuangan dan pendataan kependudukan, Kekayaan RT dan data kependudukan warga harus dikelola secara tertib, transparan, tercatat dan dapat dipertanggung jawabkan. Karena manajemen keuangan masih menggunakan cara pencatatan manual Warga Desa Plosorejo Blitar tidak bisa me-monitoring keuangan secara langsung dan mengalami keresahan jika buku keuangan tersebut mengalami kerusakan. Selain itu tidak efektif nya pengolahan data warga oleh ketua RT karena sering berkeliling desa untuk meminta data warga. Solusi dari permasalahan di atas adalah Membuat website sistem informasi manajemen keuangan dan pendataan warga Desa Plosorejo Blitar,agar mengurangi keresahan warga dan pihak ketua RT jika mengalami kehilangan atau rusaknya catatan keuangan desa,dan juga mengefektifkan,mempercepat sekaligus meringankan tugas ketua RT dalam mengolah data warga. Metode pengujian proyek akhir ini menggunakan black box testing untuk menguji fungsionalitas aplikasi dan skala likert untuk menghitung persentasi kuesioner.
Invitin Project: Scrum Framework Implementation in a Software Development Project Management Hidayah, Nadila Wirdatul; Sasmita, Rizka Rahayu; Mayangsari, Mustika Kurnia; Kusuma, Oskar Galih Wira; Rante, Hestiasari; Fariza, Arna
INTEK: Jurnal Penelitian Vol 9 No 1 (2022): April 2022
Publisher : Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/intek.v9i1.3332

Abstract

The printed invitation is commonly used in our community to invite others to special events. In Indonesian society, this has happened inviting someone from door-to-door by sending printed invitations. Due to rapid information technology development, we proposed a website-based online invitation platform, Invitin. In general, the Invitin project has three main actors, which are customer, customer service, and admin. The methodology that we used was based on the SDLC (Software Development Life Cycle) and applied Scrum framework. Implementing the Invitin project using Scrum helps to organize development tasks easier and provides other benefits in some cases. Thus, Scrum increases our team productivity to develop a high-quality dynamic website application.
Implementation of Scrum in the manufacture of non-invasive blood sugar detection devices using PPG signals Kanza, Rafly Arief; Febrianti, Erita Cicilia; Afifah, Izza Nur; Maulana, Rifqi Affan; Fariza, Arna; Rante, Hestiasari
International Journal of Applied Sciences and Smart Technologies Volume 06, Issue 1, June 2024
Publisher : Universitas Sanata Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24071/ijasst.v6i1.7719

Abstract

This study presents the effective integration of Scrum methodology in the production process of non-invasive blood sugar testing devices using Photoplethysmography (PPG) signals. During three months, a team consisting of a Product Owner, Scrum Master, and Developer Team successfully utilized Scrum's agile structure to manage the challenges of PPG signal processing, hardware integration, and software development. The repeated sprint cycles enabled swift adjustment to new obstacles and stakeholder input, guaranteeing both effectiveness and agility in the development process. The dynamic approach facilitated both the punctual delivery of complex medical equipment and the cultivation of a culture focused on ongoing enhancement, establishing a model for the future use of agile approaches in healthcare technology. The successful implementation highlights the effectiveness of Scrum in managing the complexities of medical device development. It provides a model for improving non-invasive blood sugar detection devices and establishes agile methodologies as a key driver of innovation in healthcare technology.
Penerapan Aplikasi Klasifikasi Hukum Tajwid Menggunakan Image Processing Kindarya, Fabyan; Kusumaningtyas, Entin Martiana; Barakbah, Aliridho; Permatasari, Desy Intan; Al Rasyid, M. Udin Harun; Ramadijanti, Nana; Fariza, Arna; Syarif, Iwan; Sa'adah, Umi; Saputra, Ferry Astika; Ahsan, Ahmad Syauqi; Sumarsono, Irwan; Yunanto, Andhik Ampuh; Edelani, Renovita; Primajaya, Grezio Arifiyan; Kusuma, Selvia Ferdiana
El-Mujtama: Jurnal Pengabdian Masyarakat  Vol. 4 No. 2 (2024): El-Mujtama: Jurnal Pengabdian Masyarakat
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/elmujtama.v4i2.1930

Abstract

Tajwid is an important science that regulates the way of reading the verses of the Al-Qur’an properly. Learning Tajwid means knowing the meaning that corresponds to the correct recitation. Learning to read the Al-Qur’an tends to be done traditionally in a place of learning or by calling a teacher to the house. Learning in this way has some drawbacks, such as the limited availability of trained and competent teachers because not all areas have sufficient access to these teachers. Dependence on schedules and locations can be a constraint for students with limited mobility or busy schedules. The role of the teacher is still important in learning tajwid, especially in providing effective explanations, guidance, and feedback. However, to overcome these shortcomings, integration with independent and technology-based learning methods can help improve the accessibility, flexibility, and quality of tajwid learning. The classification of tajwid laws using image processing allows users to see the results of inputting images of verses of the Al-Qur’an into the type of detected nun sukun tajwid and how to recite it. The initial stage of this system in detecting tajwid laws from uploaded images is the input of images by users, which can be done in two ways, namely by directly taking pictures using a smartphone camera or uploading images from the gallery. This is followed by the OCR process to detect the Arabic text contained in the image and provide diacritics for that Arabic text. Finally, letter classification is carried out after nun sukun and classification of tajwid laws contained in accordance with the detected letters after nun sukun. This system has an accuracy rate of 92.18% from the classification results that have been carried out.
Implementasi Sistem Antrian Online dan On-site di Kelurahan Gebang Putih Surabaya untuk Meningkatkan Efisiensi Layanan Publik Aziz, Adam Shidqul; Mubtadai, Nur Rosyid; Permatasari, Desy Intan; Saputra, Ferry Astika; Syarif, Iwan; Fariza, Arna; Al Rasyid, M. Udin Harun; Kusuma, Selvia Ferdiana; Sumarsono, Irwan; Ahsan, Ahmad Syauqi; Sa'adah, Umi; Yunanto, Andhik Ampuh; Primajaya, Grezio Arifiyan; Edelani, Renovita; Ramadijanti, Nana; Khoirunnisa, Asy Syaffa; Alfaqih, Wildan Maulana Akbar; Al Falah, Adam Ghazy
El-Mujtama: Jurnal Pengabdian Masyarakat  Vol. 5 No. 2 (2025): El-Mujtama: Jurnal Pengabdian Masyarakat
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/elmujtama.v5i2.6239

Abstract

Digitalization is an important step in improving the efficiency of public services, particularly in managing queues in government institutions such as sub-district offices. Kelurahan Gebang Putih Surabaya faces significant challenges in managing its manual queue system, which often results in discomfort for the public due to long waiting times, exceeding 5 minutes. This reduces public satisfaction and causes inefficiencies in the queue process. To address this issue, this study aims to develop and implement a digital queue system that can be accessed both online and on-site, using the User-Centered Design (UCD) approach. This approach ensures that every aspect of the system's design and development focuses on user needs through an iterative process, where the design is adjusted based on direct feedback from users. The proposed solution in this study includes the creation of a mobile and website-based queue system, allowing the public to easily take a queue number online and also enabling quick on-site queueing with a wait time of less than 10 seconds. Another advantage of this system is its automated reporting feature, which facilitates documentation and queue reports, thereby accelerating administration and monitoring to the city government. The results show that the implementation of this system significantly reduces the queue-taking time from over 5 minutes to less than 10 seconds, successfully transforming the manual system into a more efficient digital system, and streamlining the reporting process to the government, which in turn improves the quality and satisfaction of public services.
Sistem Deteksi Perokok di Area Publik Menggunakan YOLOv8 Harun, Ahmad; Fariza, Arna; Setiawardhana, Setiawardhana
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 11, No 2 (2025): Volume 11 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v11i2.94182

Abstract

Merokok merupakan salah satu penyebab utama kematian yang dapat dicegah, baik bagi perokok aktif maupun pasif. Paparan asap rokok, bahkan dalam jumlah kecil, tetap berbahaya dan menimbulkan dampak serius, terutama bagi anak-anak. Meskipun berbagai regulasi telah diterapkan untuk melarang aktivitas merokok di ruang publik, seperti Perda Kota Medan No. 3 Tahun 2014, implementasinya masih menghadapi tantangan seperti keterbatasan anggaran, lemahnya pengawasan, dan rendahnya kesadaran masyarakat. Penelitian ini mengusulkan sistem deteksi perokok berbasis deep learning menggunakan model YOLOv8 untuk mendeteksi keberadaan aktivitas merokok dalam video pengawasan. Lima varian model YOLOv8 diuji, yaitu YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, dan YOLOv8x. Hasil pelatihan menunjukkan bahwa YOLOv8m dan YOLOv8l memperoleh nilai mAP tertinggi sebesar 0,987. Namun, pada pengujian implementasi menggunakan video CCTV Full HD dengan ketinggian kamera 2 meter dan jarak maximal 3 meter, YOLOv8s menunjukkan performa terbaik dengan akurasi 100% pada pencahayaan baik dan 95% pada pencahayaan kurang, serta kecepatan inferensi yang lebih tinggi. Dengan demikian, YOLOv8s merupakan varian model yang paling optimal untuk implementasi sistem deteksi perokok di ruang publik.
SISTEM INFORMASI RADIODIAGNOSIS DARI CITRA RADIOGRAFI PANORAMIK PADA KLINIK DOKTER GIGI MENGGUNAKAN PENDEKATAN USER CENTERED DESIGN Asmara, Rengga; Fariza, Arna; -, Nurhidayah
Jurnal Informatika dan Teknik Elektro Terapan Vol. 11 No. 3 (2023)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v11i3.3256

Abstract

Petugas rekam medis di Klinik Radiologi Rumah Sakit Khusus Gigi dan Mulut Pendidikan Universitas Airlangga masih kesulitan dalam proses pengelolaan data pasien dan pembuatan radiodiagnosis karena masih menggunakan sistem manual yang belum terkomputerisasi. Maka diperlukan sebuah sistem informasi radiodiagnosis berbasis website yang dapat membantu petugas rekam medis dalam proses pengelolaan data pasien tersebut. Metode penelitian yang digunakan yaitu metode User Centered Design yaitu sebuah metode perancangan yang menempatkan pengguna sebagai pusat dari sebuah proses perancangan sistem. Proses dalam metode UCD yaitu memahami dan menentukan konteks pengguna, menentukan kebutuhan pengguna, solusi perancangan yang dihasilkan, dan evaluasi perancangan terhadap kebutuhan pengguna. Hasil akhir dari penelitian ini adalah pengguna dapat membuat radiodiagnosis penyakit gigi pasien secara online yang dapat diakses dimanapun dan kapanpun. Selain itu dokter dapat melakukan pencatatan rekam medis secara online serta dapat melihat historynya.
Human Bone Age Estimation of Carpal Bone X-Ray Using Residual Network with Batch Normalization Classification Nabilah, Anisah; Sigit, Riyanto; Fariza, Arna; Madyono, Madyono
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1024

Abstract

Bone age is an index used by pediatric radiology and endocrinology departments worldwide to define skeletal maturity for medical and non-medical purposes. In general, the clinical method for bone age assessment (BAA) is based on examining the visual ossification of individual bones in the left hand and then comparing it with a standard radiographic atlas of the hand. However, this method is highly dependent on the experience and conditions of the forensic expert. This paper proposes a new approach to age estimation of human bone based on the carpal bones in the hand and using a residual network architecture. The classification layer was modified with batch normalization to optimize the training process. Before carrying out the training process, we performed an image augmentation technique to make the dataset more varied. The following augmentation techniques were used: resizing; random affine transformation; horizontal flipping; adjusting brightness, contrast, saturation, and hue; and image inversion. The output is the classification of bone age in the range of 1 to 19 years. The results obtained when using a VGG16 model were an MAE value of 5.19 and an R2 value of 0.56 while using the newly developed ResNeXt50(32x4d) model produced an MAE value of 4.75 and an R2 value of 0.63. The research results indicate that the proposed modification of the residual training model improved classification compared to using the VGG16 model, as indicated by an MAE value of 4.75 and an R2 value of 0.63.
Co-Authors Achmad Basuki Aditama, Darmawan Afifah, Izza Nur Afrida Helen Afrida Helen Agus Prayudi Agus Wibowo Ahsan, Ahmad Syauqi Al Falah, Adam Ghazy Alfaqih, Wildan Maulana Akbar Ali Ridho Barakbah Amadea Permana Sanusi Andhik Ampuh Yunanto Andy Soeseno Annisa Rasyid Ardinur Mahyuzar Ardiyanto Happy Susilo Arif Basofi Arif Basofi Arif Basofi Asmara, Rengga Aziz, Adam Shidqul Basofi, Arif Basofi, Arif Bima Sena Bayu Dewantara Dadet Pramadihanto Dadet Pramadihanto Damastuti, Fardani Annisa Darmawan Aditama Desy Intan Permatasari, Desy Intan Deyana Kusuma Wardani Edelani, Renovita Entin Martiana Kusumaningtyas Fardani Annisa Damastuti Faris Abdi El Hakim Faris Abdi El Hakim Fatihia, Wifda Muna Febrianti, Erita Cicilia Ferry Astika Saputra Fikriyah, Masnatul Firman Arifin Hamida, Silfiana Nur Harun, Ahmad Hestiasari Rante Hestiasari Rante Hidayah, Nadila Wirdatul Huda, Achmad Thorikul I Made Akira Ivandio Agusta I.G. Puja Astawa Idris Winarno Idris Winarno Ikawati, Yunia Ilham Iskandariansyah Imam Mustafa Kamal Istiqomah, Galuh Nurul iwan Syarif Iwan Syarif Jamilatul Badriyah Jauari Akhmad Nur Hasim Kanza, Rafly Arief Khasanah, A’at Khoirunnisa, Asy Syaffa Kholid Fathoni Kindarya, Fabyan Kirana Hanifati Kusuma, Oskar Galih Wira Kusuma, Selvia Ferdiana M Udin Harun Al Rasyid, M Udin Harun Madyono, Madyono Majid, Nur Syaela Marcell Bintang Setiawan Maulana, Rifqi Affan Mayangsari, Mustika Kurnia Mochammad Rizki Hidayat Mohammad Robihul Mufid Mu'arifin Mu'arifin Much Chafid Mufid, Mohammad Robihul Muhammad Turmudzi Nabilah, Anisah Nana Ramadijanti, Nana Nindy Ilhami Ninik Purwati Novita Putri Lestari Nur Rosyid Mubtadai, Nur Rosyid Nurhidayah - Nurhidayah - Oktavia Citra Resmi Rachmawati Pratama Eskaluspita Pratama, Chrysna Ardy Putra Primajaya, Grezio Arifiyan Puspasari Susanti Rachmawati, Oktavia Citra Resmi Rahmad Santosa Rahmana, Rizal Rante, Hestiasari Rengga Asmara Riyanto Sigit, Riyanto Rosiyah Faradisa Rossi Arisdiawan Rudi Kurniawan Sa'adah, Umi Safrudana, Maulyd Ahdan Saniyatul Mawaddah Sasmita, Rizka Rahayu Sesulihatien, Wahjoe Tjatur Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana Setiawardhana, Setiawardhana Sumarsono, Irwan Susanti, Puspasari Tessy Badriyah Tessy Badriyah, Tessy Tita Karlita Titis Octary Satrio Tri Harsono Tri Harsono Wahjoe Tjatur Sesulihatien Walujo, Ivana Yudith Wifda Muna Fatihia Wiratmoko Yuwono Yesta Medya Mahardhika Yoedy Moegiharto Yufi Eko Firmansyah Yunia Ikawati Zulfian Nafis