Articles
Pengembangan Sistem Manajemen Tiket Insiden dan Operasional Harian Data Center pada PT. Infracom Telesarana Menggunakan Metode Prototype
Prasetyo, Prasetyo;
Ansor, Abdul Halim;
Hadikristanto, Wahyu;
Badruzzaman, Aceng;
Fauzi, Ahmad
Jurnal SIGMA Vol 16 No 1 (2025): Juni 2025
Publisher : Teknik Informatika, Universitas Pelita Bangsa
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37366/sigma.v16i1.6052
Pencatatan insiden sangat penting dalam operasional data center karena menyediakan dokumentasi terpusat untuk setiap kejadian. Saat ini, PT. Infracom Telesarana belum memiliki sistem manajemen insiden yang terintegrasi dan masih bergantung pada vendor eksternal, yang menghambat efisiensi. Penelitian ini bertujuan untuk mengembangkan sistem manajemen insiden dan operasional harian yang terintegrasi secara mandiri guna meningkatkan efektivitas operasional serta mendukung rekonsiliasi data bulanan. Sistem dikembangkan menggunakan bahasa pemrograman PHP dengan framework Laravel dan penyimpanan data menggunakan MySQL. Pengembangan dilakukan dengan metode Prototype dan pemodelan sistem menggunakan Unified Modeling Language (UML). Antarmuka berbasis web diterapkan untuk mempermudah tugas harian dan meningkatkan kemudahan penggunaan. Sistem yang diusulkan dirancang untuk mengatasi tantangan operasional yang ada dan diharapkan dapat meningkatkan efisiensi secara keseluruhan dengan mengurangi ketergantungan pada vendor serta memungkinkan pelacakan insiden yang lebih baik.
Penerapan Algoritma Regresi Linier Untuk Memprediksi Jumlah Kasus Gizi Buruk Pada Anak Di Jawa Barat
Hanif, Sa’ad Khairudin;
Fatchan, Muhammad;
Hadikristanto, Wahyu;
Adriansyah, Putri Nabila Adinda;
Karsito, Karsito
Jurnal SIGMA Vol 16 No 1 (2025): Juni 2025
Publisher : Teknik Informatika, Universitas Pelita Bangsa
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.37366/sigma.v16i1.6054
Penelitian ini bertujuan untuk membuat dan mengevaluasi model prediksi jumlah anak dengan gizi buruk di berbagai daerah di Jawa Barat menggunakan algoritma regresi linier. Data diambil dari Open Data Jabar yang mencakup berbagai faktor risiko. Fokus utama adalah mengukur akurasi dan efektivitas model dalam mendeteksi kasus gizi buruk serta menyelidiki peran teknologi pembelajaran mesin dalam membantu perencanaan dan penerapan intervensi kesehatan. Hasil penelitian menunjukkan bahwa model regresi linier yang dibuat memiliki tingkat akurasi yang memadai dengan R² sebesar 0.64, yang berarti model dapat menjelaskan 73% variasi dalam jumlah anak. Prediksi menunjukkan hasil yang sebanding dengan data asli, terutama di daerah dengan banyak anak. Penggunaan machine learning terbukti membantu pemerintah daerah dan lembaga kesehatan dalam menemukan wilayah yang membutuhkan perhatian khusus dan memungkinkan penempatan sumber daya yang lebih tepat sasaran dan efektif. Prediksi menunjukkan bahwa beberapa daerah, seperti Kabupaten Garut, Kabupaten Cirebon, dan Kabupaten Bogor, mungkin memiliki tingkat kasus gizi buruk yang lebih tinggi, yang memerlukan perhatian lebih dalam program kesehatan.
Implementasi Aplikasi Manajemen Arsip Berbasis Website Pada Kantor Notaris Anita Hiramayani Menggunakan Algoritma Rapid Application Development
Atthoriq, Syaifullah;
Fauziah, Sifa;
Hadikristanto, Wahyu
Journal of Information System Research (JOSH) Vol 5 No 2 (2024): Januari 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.47065/josh.v5i2.4641
In an increasingly connected world of information technology, the use of digital solutions to address records management challenges is becoming increasingly important, including in the context of notary offices. Anita Hiramayani Notary Office is one of the leading notary offices operating in Tambun sub-district, the main problem identified is the difficulty of finding data within a certain period of time. Where administrative staff have to spend a long time to track and find the necessary data in piles of various excel files and worksheets. To overcome this problem, Notary Anita Hiramayani's office needs to implement a website-based records management application with the application of the Rapid Application Development algorithm. The results of the research after the implementation of a website-based records management application, show that the application can overcome the problems of records management faced by the notary office can increase efficiency in making reports and the effectiveness of legal services provided by the notary office
Sistem Informasi Penjualan Hewan Qurban Berbasis Web Menggunakan Metode Rapid Aplication Development (RAD)
Fadlurrohman, Muhammad Shiddiq;
Hadikristanto, Wahyu;
Widodo, Edy
Journal of Information System Research (JOSH) Vol 5 No 4 (2024): Juli 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.47065/josh.v5i4.5584
The Al-Muslim Foundation is an organization that carries out the process of selling sacrificial animals, but still uses traditional methods such as recording orders, payments and animal information manually using books or physical records. This has the potential to cause recording errors and data loss, which makes it very possible for errors to occur in the process. This research aims to build a web-based system to help handle this problem. The system that will be created uses the Rapid Application Development method. Testing of this system will be carried out using the black box testing method. The results of this research show that the Al-Muslim Foundation has succeeded in increasing effectiveness and efficiency in the process of selling sacrificial animals, as well as expanding sales so that they can be accessed by potential buyers anytime and anywhere.
Detect the Activity of Benign and Malignant Breast Cancer
Ayu Fitriyani;
Muhamad Fatchan;
Wahyu Hadikristanto
International Journal of Integrated Science and Technology Vol. 2 No. 5 (2024): May 2024
Publisher : MultiTech Publisher
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.59890/ijist.v2i5.1870
Breast cancer detection is an important stage for early cancer diagnosis. In this study, a Convolutional Neural Network (CNN) algorithm is used to detect breast cancer. The dataset used consists of MRI scan images of benign and malignant breast cancer, which are processed through breast image cropping and data augmentation. The model was trained using CNN architecture with transfer learning method of VGG-16 model. The results of the model training showed good performance with an accuracy of 62%. These findings show the potential of using CNN and transfer learning in improving early detection of breast cancer.
Valuation of Svm Kernel Performance in Organic and Non-Organic Waste Classification
Dahyoung Yenuargo;
Muhamad Fatchan;
Wahyu Hadikristanto
International Journal of Integrated Science and Technology Vol. 2 No. 5 (2024): May 2024
Publisher : MultiTech Publisher
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.59890/ijist.v2i5.1873
In an era of increasing concern for environmental sustainability, waste management remains an important global issue. Efficient waste classification, in particular distinguishing between organic and recyclable materials, is essential for reducing environmental impact. Traditional manual classification methods are often error-prone and inefficient. This research evaluates the performance of SVM models with RBF and Polynomial kernels for waste classification, using SqueezeNet for feature extraction. Datasets from Kaggle were preprocessed and augmented to improve model training. The experimental results show that the SVM model with RBF kernel outperforms the Polynomial kernel in classifying organic and recyclable waste, with an accuracy of 97.9% compared to 97.3% for the Polynomial kernel. This finding underscores the importance of kernel selection and parameter tuning in optimising SVM models for non-linear classification tasks. This research contributes to the development of more efficient and accurate waste classification technologies, promoting better waste management practices. Further research is recommended to explore advanced feature extraction methods and expand the scope of classification to cover a wider range of waste categories.
Industrial Safety Helmet Detection: Innovative CNN-Based Classification Approach
Herdyanto, Febro;
Fatchan, Muhamad;
Hadikristanto, Wahyu
International Journal of Integrated Science and Technology Vol. 2 No. 5 (2024): May 2024
Publisher : MultiTech Publisher
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.59890/ijist.v2i5.1925
This study presents the development and evaluation of a CNN-based model for detecting safety helmets in industrial settings. Utilizing a dataset from GitHub, which includes images of individuals wearing safety helmets in various industrial environments, the model was trained using the YOLOv8 architecture over 100 epochs. The comprehensive training process involved data augmentation techniques to enhance generalization capabilities. The evaluation results demonstrated high precision (0.92) and recall (0.856) for helmet detection, with an overall mAP50 of 0.766. Visual analysis through precision-confidence curves confirmed the model's high reliability in detecting helmets at higher confidence thresholds. These findings suggest that the implementation of this model in real-time monitoring systems could significantly enhance industrial safety by reducing manual inspection efforts and ensuring compliance with safety regulations
Pelatihan Peningkatan Kemampuan Guru SMP IT Insan Kamil Cikarang Dalam Melakukan Evaluasi Pembelajaran Menggunakan Computer Base Test (CBT)
Miharja, Muhammad Najamuddin Dwi;
Edora, Edora;
hadikristanto, Wahyu;
Andika, Sophian;
Herol, Herol
Welfare : Jurnal Pengabdian Masyarakat Vol. 1 No. 2 (2023): Welfare : June 2023
Publisher : Fakultas Ekonomi dan Bisnis Islam, IAIN Kediri
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.30762/welfare.v1i2.506
This community service program aims to improve the ability of IT Insan Kamil Cikarang Middle School teachers in conducting learning evaluations using the Computer-Based Test (CBT). Teachers will be given training and an introduction to CBT and given practice to create questions and enter them into the CBT platform. The training method used is a competency-based training approach using demonstration methods and hands-on practice in learning. The results of this training indicate an increase in teacher competency in designing, developing, and implementing information technology-based learning evaluations. It is hoped that this program can increase effectiveness and efficiency in learning evaluation, as well as increase student motivation in learning. Challenges that need to be overcome include the lack of understanding and use of technology by teachers and students, and the need for the right approach in implementing CBT. This program is expected to provide greater benefits for teachers and students.
Improving Employee Retention Through Prediction and Risk Management Using Machine Learning
Pratama, Galang Rintang Widya;
Fatchan, Muhamad;
Hadikristanto, Wahyu
International Journal of Applied Research and Sustainable Sciences Vol. 2 No. 6 (2024): June 2024
Publisher : MultiTech Publisher
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.59890/ijarss.v2i6.1960
This research investigates the effectiveness of two machine learning models (Logistic Regression and Random Forest) in predicting employee turnover. This research uses IBM HR Analytics employee attrition and performance dataset and performance dataset from Kaggle and implements nested ensemble models in Google Colab. After data pre-processing steps such as feature merging, generation, engineering, cleaning, coding, and normalisation, the data is divided into training and testing sets. The models were trained and evaluated based on their accuracy. The results of averaging the three departments showed that the Random Forest model achieved the highest accuracy (97.7%) compared to Logistic Regression (94.6%). Therefore, this study shows that Logistic Regression is the most suitable model to predict employee turnover in the given dataset.
Comparison of Defective Casting Product Classification Results Using the K-Nearest Neighbors Algorithm
Alfarizi, Muhammad Farhan;
Fatchan, Muhamad;
Hadikristanto, Wahyu
International Journal of Applied Research and Sustainable Sciences Vol. 2 No. 6 (2024): June 2024
Publisher : MultiTech Publisher
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.59890/ijarss.v2i6.1968
This study compares the accuracy of K-Nearest Neighbors (KNN) and Naive Bayes algorithms in detecting defects in impeller products. Using a dataset of impeller images, we applied preprocessing, feature extraction, and selection techniques. The models were assessed using metrics such as precision, accuracy, F1-score, recall. and with KNN achieving 98.11% accuracy and Naive Bayes 85.38%. The t-SNE visualization confirmed distinct clustering of defective and non-defective products. Our findings suggest that KNN is more reliable for defect detection in industrial applications. These results provide valuable insights for implementing effective machine learning models in manufacturing quality control.