Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Masyarakat Informatika

Artificial Intelligence-Aided In Silico Screening of Syzygium polyanthum Phytochemicals for Antidiabetic Drug Discovery Using ACO (Ant Colony Optimization) Algorithm Samsuri, Ahmad; Hermawan, Faris; Zikri, Adi Tiara; Vifta, Rissa Laila; Puspitasari, Anita Dwi
Jurnal Masyarakat Informatika Vol 16, No 2 (2025): Issue in Progress
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.2.73574

Abstract

This research employs an artificial intelligence (AI)-driven molecular docking approach to identify potential antidiabetic compounds from Syzygium polyanthum phytochemicals targeting the α-glucosidase enzyme. The docking simulations were conducted using the PLANTS software, which utilizes an ant colony optimization (ACO) algorithm, a nature-inspired AI technique that mimics the foraging behavior of ants to explore ligand binding conformations efficiently. PLANTS integrates multiple empirical scoring functions, including ChemPLP, to evaluate protein-ligand interactions by modeling steric complementarity, hydrogen bonding, and torsional potentials, enabling accurate prediction of binding affinities. The protein structure with PDB code 2JKE was validated with a root-mean-square deviation (RMSD) of 0.2912 Å, confirming the reliability of the docking protocol. Screening results revealed seven phytochemical compounds Hexadecanoic acid 2-hydroxy-1-(hydroxymethyl), Methyl oleate, Methyl palmitate, Phytol, 9,12,15-Octadecatrien-1-ol, Nerolidol, and Eicosane exhibited lower docking scores (-96.2919 to -80.5188) than both the reference drug miglitol (-80.2642) and the native ligand (-77.2910), indicating stronger and more stable binding to the α-glucosidase active site. These findings suggest that the identified compounds have superior theoretical inhibitory potential compared to miglitol, a clinically used α-glucosidase inhibitor. The AI-based in silico screening using PLANTS thus provides a powerful, cost-effective strategy for accelerating antidiabetic drug discovery by prioritizing promising natural compounds for further experimental validation.
Co-Authors Advistasari, Yustisia Dian Advistasari, Yustisia Dian Agitya Resti Erwiyani Alif Maulidya Aminah, Maulidahul Andi Pradana Anhuma Turaya, M.Ridho Anita Dwi Puspitasari Annisah Mahanani Arif Santoso Avian Tri Wahyudi Choirul Huda Damar Adi Prasetyo Della Jauharotus Sa’adah Dewi Purnamasari Diah Nurlaila Dyah Kartika Wening Eka Noviya Fuzianingsih Elvansi, M. Elvansi Faris Hermawan, Faris Fitria Mentari Hadi Nasbey Hakim, Abdillah Lukman Hanifah Trisnaningsih Hati, Anita Kumala Indah Hartati Indah Mahendra Wardani Indah Mahendra Wardani Istianatus Sunnah Jannah, Nadia Miftahul Jatmiko Susilo Komang Ana Pratiwi Lailatul Badriyah Lestari, Puji Luhurningtyas, Fania Putri M. Elvansi Elvansi Mafitasari, Dwi Mahardika Adhi Candra Mardiyanti, Devi Maria Ulfah Marini, Yeni Marlina, Lala Adetia Melati Aprilliana Ramadhani Melati Aprilliana Ramadhani, Melati Aprilliana Muhammad Alviyan Shutiawan Muhammad Andri Wansyah Munifilia Ekasari Nani Winarti Ni Putu Yunika Candra Riskiana Ni Putu Yunika Candra Riskiana Nova Hasani Furdiyanti Nur Syarohmawati Nurjanah, Mutia Hariani Nurul Chanifah Paonganan, Afner Otniel Pera Amelia Prasetyo, Damar Adi Puji Astutik Puji Astutik Pujiastuti, Anasthasia Putri Naja Fadhilah Rahma Diyan Martha Rahman, Erik Ramadhani, Melati Apriliana Reni Citra Agustina Richa Yuswantina Rilla Noor Farida Salsabiela Dwiyudrisa Suyudi Samsuri, Ahmad Santoso, Wingit Saputra, Yoga Sikni Retno Karminingtyas Siti Khusnul Khotimah Siti Khusnul Khotimah, Siti Khusnul Sri Mustika Ayu SULASTRI Sulastri Sulastri Supiani Rahayu Suyudi, Salsabiela Dwiyudrisa Tina Mawardika Tinasari, Niken Delvin Trisnaningsih, Hanifah Wahyudi, Avian Tri Wansyah, Muhammad Andri Winda Ayu Ningtyas Windi Susmayanti Wingit Santoso Yanti, Sahri Yurike Tatengkeng Yustisia Dian Advistasari Zikri, Adi Tiara