p-Index From 2021 - 2026
8.003
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Informatika Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Jurnal Teknik ITS IPTEK Journal of Science IPTEK Journal of Proceedings Series IPTEK The Journal for Technology and Science Techno.Com: Jurnal Teknologi Informasi MATICS : Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology) Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Mikrotek Jurnal Simantec Jurnal Ilmiah Kursor Scan : Jurnal Teknologi Informasi dan Komunikasi Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Edukasi dan Penelitian Informatika (JEPIN) International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Register: Jurnal Ilmiah Teknologi Sistem Informasi EMITTER International Journal of Engineering Technology Jurnal Inspiration Briliant: Jurnal Riset dan Konseptual Journal of Development Research Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi INTEGER: Journal of Information Technology Seminar Nasional Teknologi Informasi Komunikasi dan Industri JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal ULTIMATICS Explore IT : Jurnal Keilmuan dan Aplikasi Teknik Informatika Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) CCIT (Creative Communication and Innovative Technology) Journal SPIRIT ILKOMNIKA: Journal of Computer Science and Applied Informatics Indonesian Journal of Electrical Engineering and Computer Science Jurnal Teknik Informatika (JUTIF) Journal of Technology and Informatics (JoTI) Melek IT: Information Technology Journal Jurnal Nasional Teknik Elektro dan Teknologi Informasi Journal Research of Social Science, Economics, and Management Sewagati RESLAJ: Religion Education Social Laa Roiba Journal Jurnal Indonesia : Manajemen Informatika dan Komunikasi
Claim Missing Document
Check
Articles

Found 9 Documents
Search
Journal : Jurnal Buana Informatika

Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra Liantoni, Febri; Suciati, Nanik; Fatichah, Chastine
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (557.421 KB)

Abstract

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio
MODIFIKASI ANT COLONY OPTIMIZATION BERDASARKAN GRADIENT UNTUK DETEKSI TEPI CITRA Liantoni, Febri; Suciati, Nanik; Fatichah, Chastine
Jurnal Buana Informatika Vol 6, No 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (557.421 KB) | DOI: 10.24002/jbi.v6i3.435

Abstract

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio
Penggabungan Fitur Tekstur yang Invariant terhadap Iluminasi dan Fitur Bentuk untuk Deteksi Acute Lymphoblastic Leukemia Saputra, Rizal A; Fatichah, Chastine; Suciati, Nanik
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (628.19 KB) | DOI: 10.24002/jbi.v7i1.481

Abstract

Abstract. Detection with microscopic blood image can help early detection of Accute Lymphoblastic Leukemia (ALL). Therefore, image acquisition process under lighting variation cause varying illumination image, so it’s needed to find texture feature extraction method that is invariant towards illumination. Shape feature also needed in this study because can represent characteristics of microscopic blood image.This study proposes combination of texture feature that is illumination invariant and shape feature for ALL detection. Texture feature will be extracted using Complete Robust Local Binary Pattern (CRLBP) method and will be tested on microscopic blood image dataset named ALL_IDB1. Testing will be conducted by using various combination of different texture feature and shape feature. Combination of shape feature and CRLBP is perform better than others. In indvidual cell test, highest result using SVM Linear with accuracy 90.89%, sensitivity 94.24% and specificity 64.82%. Classification using ALL image reach accuracy 88.00 %, sensitivity 82.35% and specificity 100%.Keywords: Acute Lymphoblastic Leukemia detection, Complete Robust Local Bianry Pattern, Local Binary Pattern, shape feature, texture feature. Abstrak. Deteksi dengan citra mikroskopik sel darah dapat membantu untuk deteksi dini Accute Lymphoblastic Leukemia (ALL). Namun, proses akuisisi citra mikroskopik dengan variasi pencahayaan yang berbeda menyebabkan iluminasi citra menjadi beragam sehingga dibutuhkan metode yang dapat mengekstraksi fitur tekstur yang invariant terhadap iluminasi. Fitur bentuk juga dibutuhkan dalam penelitian ini karena dapat merepresentasikan perbedaan pada citra mikroskopik sel darah. Penelitian ini mengusulkan penggabungan fitur tekstur yang invariant terhadap iluminasi dan fitur bentuk untuk deteksi dini ALL. Fitur tekstur akan diekstraksi dengan menggunakan metode Complete Robust Local Binary Pattern (CRLBP) dan diuji coba pada dataset ALL_IDB1. Uji coba dilakukan dengan variasi penggabungan fitur bentuk dan fitur tekstur. Penggabungan fitur bentuk dan CRLBP merupakan kombinasi fitur dengan performansi paling baik. Pada pengujian sel tunggal memberikan hasil tertinggi pada klasifikasi SVM Linear dengan akurasi 90,89%, sensitifitas 94,24% dan sepesifisitas 64,82%. Pada klasifikasi citra ALL akurasi mencapai 88,00%, dengan sensitifitas 82,35% dan spesifisitas 100%.Kata Kunci: Complete Robust Local Binary Pattern, deteksi Acute Lymphoblastic Leukemia, Local Binary Pattern, fitur bentuk, fitur tekstur
Three-level Local Thresholding Berbasis Metode Otsu untuk Segmentasi Leukosit pada Citra Leukemia Limfoblastik Akut Mandyartha, Eka Prakarsa; Fatichah, Chastine
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (672.303 KB) | DOI: 10.24002/jbi.v7i1.483

Abstract

Abstract. Segmentation of Acute Lymphoblastic Leukemia (ALL) images can be used to identify the presence of ALL disease. In this paper, three-level local thresholdings based on Otsu method is presented for leucocytes segmentation in ALL image. Firstly, a method based on Gram-Schmidt orthogonalization theory is applied to partition the input image into several sub-images. The proposed method extends Otsu’s bi-level thresholding to three-level thresholding method  to find two local threshold values that maximize between-class variance. Using the two local threshold values and three-level local thresholding technique then segmenting each of sub-images into three regions, e.g. nucleus, cytoplasm, and background. To evaluate the performance of the proposed method, 32 peripheral blood smear images are used. The performance of the proposed method is compared with manually segmented ground truth using Zijdenbos similarity index (ZSI), precision, and recall. An experimental evaluation demonstrates superior performance over three-level global thresholding for ALL image segmentation.Keywords: three-level local thresholding, acute lymphoblastic leukemia, three-level Otsu thresholding, gram-schmidt orthogonalizationAbstrak. Segmentasi citra Limfoblastik Leukemia Akut (LLA) dapat digunakan untuk mengidentifikasi kehadiran penyakit LLA. Pada penelitian ini diusulkan metode three-level local thresholding berbasis metode Otsu untuk segmentasi leukosit pada citra LLA. Pertama-tama, metode berbasis teori ortogonalisasi Gram-Schmidt diaplikasikan untuk membagi citra LLA menjadi sub-sub citra. Metode yang diusulkan memperluas metode bi-level thresholding Otsu ke dalam kasus three-level thresholding untuk pencarian dua nilai ambang lokal tiap sub-citra yang memaksimumkan varian antar kelas. Dengan nilai ambang jamak lokal tersebut, teknik three-level local thresholding selanjutnya  mensegmentasi tiap sub-citra ke dalam tiga region, yaitu nukelus, sitoplasma, dan latar belakang. Untuk mengevaluasi performa metode usulan, 32 citra uji digunakan. Performa metode yang diusulkan dibandingkan dengan citra segmentasi manual menggunakan Zijdenbos similarity index (ZSI), presisi, dan recall. Hasil uji coba menunjukkan performa three-level local thresholding lebih unggul daripada metode three-level global thresholding untuk segmentasi citra LLA. Kata Kunci: three-level local thresholding, leukemia limfoblastik akut, three-level Otsu thresholding, ortogonalisasi gram-schmidt
Penggabungan Fitur Bentuk dan Fitur Tekstur yang Invariant terhadap Rotasi untuk Klasifikasi Citra Pap Smear Pasrun, Yuwanda Purnamasari; Fatichah, Chastine; Suciati, Nanik
Jurnal Buana Informatika Vol 7, No 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (714.041 KB) | DOI: 10.24002/jbi.v7i1.479

Abstract

Abstract. Pap test is a cervical cancer screening manually and requires a long time that it needs an exact cell classification system based computers. Features determination by observation in characteristic differences between the datasets visually betweenclass will help a cell classification results which has relevant characteristics between classes. In addition, the change in orientation of the cells at the time of the acquisition will affect the value of the generated feature so extraction method that is rotation invariant is needed to overcome that problem. This research proposes the combination of simple shapes feature and the texture feature from extraction Local Binary Pattern Histogram Fourier (LBP-HF) that invariant to rotation as additional features to classify pap smear images. The result show that the proposed feature combination yield good performance with accuracy 92.44% for two category cell and 70.06% for seven class cell.Keywords: classification, lbp-hf,  pap smear image, shape feature.Abstrak. Pap test adalah pemeriksaan kanker serviks secara manual yang membutuhkan waktu yang lama sehingga dibutuhkan sistem klasifikasi sel berbasis komputer yang tepat. Penentuan fitur melalui observasi pada perbedaan ciri antarkelas secara visual pada dataset akan membantu hasil klasifikasi sel untuk mendapatkan ciri yang relevan antarkelas. Selain itu, adanya perubahan orientasi sel pada saat akuisisi akan mempengaruhi nilai fitur yang dihasilkan sehingga dibutuhkan metode ekstraksi fitur yang invariant terhadap rotasi. Penelitian ini mengusulkan penggabungan fitur bentuk sederhana dan fitur tekstur dengan ekstraksi fitur Local Binary Pattern –Histogram Fourier yang invariant terhadap rotasi sebagai ciri tambahan dalam mengklasifikasikan citra pap smear. Hasilnya menunjukkan bahwa kombinasi fitur menghasilkan performa yang baik dengan akurai 92,44% untuk dua kategori sel dan 70,06% untuk tujuh kelas sel.Kata Kunci: klasifikasi, lbp-hf, citra pap smear, fitur bentuk.
Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra Febri Liantoni; Nanik Suciati; Chastine Fatichah
Jurnal Buana Informatika Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.435

Abstract

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio
Penggabungan Fitur Bentuk dan Fitur Tekstur yang Invariant terhadap Rotasi untuk Klasifikasi Citra Pap Smear Yuwanda Purnamasari Pasrun; Chastine Fatichah; Nanik Suciati
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.479

Abstract

Abstract. Pap test is a cervical cancer screening manually and requires a long time that it needs an exact cell classification system based computers. Features determination by observation in characteristic differences between the datasets visually betweenclass will help a cell classification results which has relevant characteristics between classes. In addition, the change in orientation of the cells at the time of the acquisition will affect the value of the generated feature so extraction method that is rotation invariant is needed to overcome that problem. This research proposes the combination of simple shapes feature and the texture feature from extraction Local Binary Pattern Histogram Fourier (LBP-HF) that invariant to rotation as additional features to classify pap smear images. The result show that the proposed feature combination yield good performance with accuracy 92.44% for two category cell and 70.06% for seven class cell.Keywords: classification, lbp-hf,  pap smear image, shape feature.Abstrak. Pap test adalah pemeriksaan kanker serviks secara manual yang membutuhkan waktu yang lama sehingga dibutuhkan sistem klasifikasi sel berbasis komputer yang tepat. Penentuan fitur melalui observasi pada perbedaan ciri antarkelas secara visual pada dataset akan membantu hasil klasifikasi sel untuk mendapatkan ciri yang relevan antarkelas. Selain itu, adanya perubahan orientasi sel pada saat akuisisi akan mempengaruhi nilai fitur yang dihasilkan sehingga dibutuhkan metode ekstraksi fitur yang invariant terhadap rotasi. Penelitian ini mengusulkan penggabungan fitur bentuk sederhana dan fitur tekstur dengan ekstraksi fitur Local Binary Pattern –Histogram Fourier yang invariant terhadap rotasi sebagai ciri tambahan dalam mengklasifikasikan citra pap smear. Hasilnya menunjukkan bahwa kombinasi fitur menghasilkan performa yang baik dengan akurai 92,44% untuk dua kategori sel dan 70,06% untuk tujuh kelas sel.Kata Kunci: klasifikasi, lbp-hf, citra pap smear, fitur bentuk.
Penggabungan Fitur Tekstur yang Invariant terhadap Iluminasi dan Fitur Bentuk untuk Deteksi Acute Lymphoblastic Leukemia Rizal A Saputra; Chastine Fatichah; Nanik Suciati
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.481

Abstract

Abstract. Detection with microscopic blood image can help early detection of Accute Lymphoblastic Leukemia (ALL). Therefore, image acquisition process under lighting variation cause varying illumination image, so it’s needed to find texture feature extraction method that is invariant towards illumination. Shape feature also needed in this study because can represent characteristics of microscopic blood image.This study proposes combination of texture feature that is illumination invariant and shape feature for ALL detection. Texture feature will be extracted using Complete Robust Local Binary Pattern (CRLBP) method and will be tested on microscopic blood image dataset named ALL_IDB1. Testing will be conducted by using various combination of different texture feature and shape feature. Combination of shape feature and CRLBP is perform better than others. In indvidual cell test, highest result using SVM Linear with accuracy 90.89%, sensitivity 94.24% and specificity 64.82%. Classification using ALL image reach accuracy 88.00 %, sensitivity 82.35% and specificity 100%.Keywords: Acute Lymphoblastic Leukemia detection, Complete Robust Local Bianry Pattern, Local Binary Pattern, shape feature, texture feature. Abstrak. Deteksi dengan citra mikroskopik sel darah dapat membantu untuk deteksi dini Accute Lymphoblastic Leukemia (ALL). Namun, proses akuisisi citra mikroskopik dengan variasi pencahayaan yang berbeda menyebabkan iluminasi citra menjadi beragam sehingga dibutuhkan metode yang dapat mengekstraksi fitur tekstur yang invariant terhadap iluminasi. Fitur bentuk juga dibutuhkan dalam penelitian ini karena dapat merepresentasikan perbedaan pada citra mikroskopik sel darah. Penelitian ini mengusulkan penggabungan fitur tekstur yang invariant terhadap iluminasi dan fitur bentuk untuk deteksi dini ALL. Fitur tekstur akan diekstraksi dengan menggunakan metode Complete Robust Local Binary Pattern (CRLBP) dan diuji coba pada dataset ALL_IDB1. Uji coba dilakukan dengan variasi penggabungan fitur bentuk dan fitur tekstur. Penggabungan fitur bentuk dan CRLBP merupakan kombinasi fitur dengan performansi paling baik. Pada pengujian sel tunggal memberikan hasil tertinggi pada klasifikasi SVM Linear dengan akurasi 90,89%, sensitifitas 94,24% dan sepesifisitas 64,82%. Pada klasifikasi citra ALL akurasi mencapai 88,00%, dengan sensitifitas 82,35% dan spesifisitas 100%.Kata Kunci: Complete Robust Local Binary Pattern, deteksi Acute Lymphoblastic Leukemia, Local Binary Pattern, fitur bentuk, fitur tekstur
Three-level Local Thresholding Berbasis Metode Otsu untuk Segmentasi Leukosit pada Citra Leukemia Limfoblastik Akut Eka Prakarsa Mandyartha; Chastine Fatichah
Jurnal Buana Informatika Vol. 7 No. 1 (2016): Jurnal Buana Informatika Volume 7 Nomor 1 Januari 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i1.483

Abstract

Abstract. Segmentation of Acute Lymphoblastic Leukemia (ALL) images can be used to identify the presence of ALL disease. In this paper, three-level local thresholdings based on Otsu method is presented for leucocytes segmentation in ALL image. Firstly, a method based on Gram-Schmidt orthogonalization theory is applied to partition the input image into several sub-images. The proposed method extends Otsu’s bi-level thresholding to three-level thresholding method  to find two local threshold values that maximize between-class variance. Using the two local threshold values and three-level local thresholding technique then segmenting each of sub-images into three regions, e.g. nucleus, cytoplasm, and background. To evaluate the performance of the proposed method, 32 peripheral blood smear images are used. The performance of the proposed method is compared with manually segmented ground truth using Zijdenbos similarity index (ZSI), precision, and recall. An experimental evaluation demonstrates superior performance over three-level global thresholding for ALL image segmentation.Keywords: three-level local thresholding, acute lymphoblastic leukemia, three-level Otsu thresholding, gram-schmidt orthogonalizationAbstrak. Segmentasi citra Limfoblastik Leukemia Akut (LLA) dapat digunakan untuk mengidentifikasi kehadiran penyakit LLA. Pada penelitian ini diusulkan metode three-level local thresholding berbasis metode Otsu untuk segmentasi leukosit pada citra LLA. Pertama-tama, metode berbasis teori ortogonalisasi Gram-Schmidt diaplikasikan untuk membagi citra LLA menjadi sub-sub citra. Metode yang diusulkan memperluas metode bi-level thresholding Otsu ke dalam kasus three-level thresholding untuk pencarian dua nilai ambang lokal tiap sub-citra yang memaksimumkan varian antar kelas. Dengan nilai ambang jamak lokal tersebut, teknik three-level local thresholding selanjutnya  mensegmentasi tiap sub-citra ke dalam tiga region, yaitu nukelus, sitoplasma, dan latar belakang. Untuk mengevaluasi performa metode usulan, 32 citra uji digunakan. Performa metode yang diusulkan dibandingkan dengan citra segmentasi manual menggunakan Zijdenbos similarity index (ZSI), presisi, dan recall. Hasil uji coba menunjukkan performa three-level local thresholding lebih unggul daripada metode three-level global thresholding untuk segmentasi citra LLA. Kata Kunci: three-level local thresholding, leukemia limfoblastik akut, three-level Otsu thresholding, ortogonalisasi gram-schmidt
Co-Authors Achmad Arwan Adhi Nurilham Aditya Bagusmulya Afrizal Laksita Akbar Agung Prasetya Agus Subhan Akbar, Agus Subhan Agus Zainal Arifin Agus Zainal Arifin Ahmad Hayam Brilian, Ahmad Hayam Ahmad Saikhu Ahmad Syauqi Ahmad Syauqi Aini, Nuru Ainul Mu'alif Akwila Feliciano Akwila Feliciano Amalia Nurani Basyarah Amelia Devi Putri Ariyanto Amirullah Andi Bramantya Andika Pratama Andrea Bemantoro J Anisa Nur Azizah Anna Kholilah Anny Yuniarti Ardian Yusuf Wicaksono Ariana Yunita Arianto Wibowo Arif Sanjani, Lukman Arijal Ibnu Jati Ario Bagus Nugroho Arya Yudhi Wijaya Asmawati, Diah Avin Maulana Ayu Ismi Hanifah Benny Afandi Bilqis Amaliah Budi Pangestu Cahyaningtyas, Zakiya Azizah Daniel Oranova Siahaan Daniel Sugianto Daniel Swanjaya Darlis Heru Murti Darlis Herumurti Davin Masasih Deni Sutaji Desmin Tuwohingide Dhimas Pamungkas Wicaksono Diana Purwitasari Diana Purwitasari Diema Hernyka Satyareni Dimas Ari Setyawan Dimas Renggana, Christiant Dini Adni Navastara, Dini Adni Djoko Purwanto Dwi Kristianto Dwi Taufik Hidayat edy susanto Eha Renwi Astuti Eka Prakarsa Mandyartha Eka Prakarsa Mandyartha Eko Prasetyo Esa Prakasa Evan Tanuwijaya Evelyn Sierra Evy Kamilah Ratnasari Fachrul Pralienka Bani Muhamad Fachrul Pralienka Bani Muhamad Faizin, Muhammad 'Arif Fajar, Aziz Fajrin, Ahmad Miftah Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Fatonah, Nenden Siti FATRA NONGGALA PUTRA Febri Liantoni Febri Liantoni, Febri Fiqey Indriati Eka Sari Furqan Aliyuddien Ginardi, R.V. Hari Ginardi, Raden Venantius Hari Gou Koutaki Hadziq Fabroyir Handayani Tjandrasa Haniefardy, Addien Haq, Dina Zatusiva Hardika Khusnuliawati Hardika Khusnuliawati Hari Ginardi Hendra Mesra hidayat, dwi taufik Hilya Tsaniya Hilya Tsaniya I Ketut Eddy Purnama Ilmi, Akhmad Bakhrul Imam Artha Kusuma Imamah Imamah Irzal Ahmad Sabilla Isye Arieshanti Ivan Agung Pandapotan Jayanti Yusmah Sari Johan Varian Alfa Keiichi Uchimura Kevin Christian Hadinata Kevin Christian Hadinata Kinana Syah Sulanjari Kinana Syah Sulanjari Kusuma, Irnayanti Dwi Kusuma, Selvia Ferdiana Lukman Hakim M Rahmat Widyanto M. Rahmat Widyanto Machfud, M. Mughniy Mambaul Izzi Martini Dwi Endah Susanti Maulani, Irham Maulidiya, Erika Mauridhi Hery Purnomo Moch Zawaruddin Abdullah Mohamad Anwar Syaefudin Muhamad, Fachrul Pralienka Bani Muhammad 'Arif Faizin Muhammad Bahrul Subkhi Muhammad Fikri Sunandar Muhammad Jerino Gorter Muhammad Meftah Mafazy Muhammad Muharrom Al Haromainy Muhtadin Mustika Mentari Mutmainnah Muchtar Nafiiyah, Nur Nanik Suciati Nanik Suciati Narandha Arya Ranggianto Nazarrudin, Ahmad Ricky Nur Hayatin Nur Nafi’iyah Nur Nafi’iyah Nurilham, Adhi Nurina Indah Kemalasari Nursanti Novi Arisa Nursuci Putri Husain Nurwijayanti nuzula, Muhammad Iqbal firdaus Pradany, Latifa Nurrachma Priambodo, Anas Rachmadi Putra, Ramadhan Hardani R Dimas Adityo R. Dimas Adityo R. V. Hari Ginardi R.V Hari Ginardi R.V. Hari Ginardi Rachmad Abdullah Rahayu, Putri Nur Ramadhan Rosihadi Perdana Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Kartika Dewi Rendra Dwi Lingga P. Riduwan, Muhammad Riyanarto Sarno Rizal A Saputra Rizal A Saputra, Rizal A Rizal Setya Perdana Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Raaiqa Bintana Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Safhira Maharani Safhira Maharani Sahmanbanta Sinulingga Salim Bin Usman Salim Bin Usman Sambodho, Kriyo Santoso, Bagus Jati Sarimuddin, Sarimuddin Septiyan Andika Isanta Sherly Rosa Anggraeni Sherly Rosa Anggraeni Shofiya Syidada Siti Mutrofin Siti Mutrofin Siti Rochimah Stefani Tasya Hallatu Subali, Made Agus Putra Subhan Nooriansyah Subkhi, M. Bahrul Sudianjaya, Nella Rosa Suhariyanto Suhariyanto Surya Sumpeno Syah Dia Putri Mustika Sari Sylvi Novita Dewi Tanzilal Mustaqim Tesa Eranti Putri Thoha Haq Tsaniya, Hilya Tuwohingide, Desmin Umi Laily Yuhana, Umi Laily Umy Rizqi Vit Zuraida Wahyu Saputra, Vriza Welly Setiawan Limantoro Wibowo, Prasetyo Wijoyo, Satrio Hadi Wilda Imama Sabilla Yoga Yustiawan Yosi Kristian Yudhi Purwananto Yuhana, Umi Laili Yuita Arum Sari Yulia Niza Yulia Niza Yunan Helmi Mahendra Yuslena Sari, Yuslena Yuwanda Purnamasari Pasrun Zaenal Arifin, Agus Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas