Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JTAM (Jurnal Teori dan Aplikasi Matematika)

Super (a,d)-P_2⨀P_m-Antimagic Total Labeling of Corona Product of Two Paths Yatin, Bela Zainun; Awanis, Zata Yumni; Wardhana, I Gede Adhitya Wisnu
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 8, No 2 (2024): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v8i2.20065

Abstract

Graph labeling involves mapping the elements of a graph (edges and vertices) to a set of positive integers. The concept of an anti-magic super outer labeling (a,d)-H pertains to assigning labels to the vertices and edges of a graph using natural numbers {1,2,3,...,p+q}. The weights of the outer labels H form an arithmetic sequence {a,a+d,a+2d,...,a+(k-1)d}, where 'a' represents the first term, 'd' is the common difference, and 'k' denotes the total number of outer labels, with the smallest label assigned to a vertex. This study investigates the super (a,d)-P_2⨀P_m-antimagic total labeling of the corona product P_n⨀P_m, where n and m are both greater than or equal to 3. We define the labeling functions for vertices and edges based on the partitioning of labels into three subsets. Using k-balanced and (k,δ)-anti balanced multisets, we demonstrate that for m being odd, P_n⨀P_m is super (9m^2 n+4mn+m-n+3,1)-P_2 ⨀▒P_(m ) -antimagic, and for m being even, P_n⨀P_m is super (9m^2 n+4mn+m-2n+5,3)-P_2 ⨀▒P_(m ) -antimagic. The labeling scheme is illustrated through examples. For the case when m is odd, an antimagic total labeling of P_3 ⨀▒P_3    forms a super (282,1)- P_2 ⨀▒P_(3 )  -antimagic labeling. In the case of even m, an antimagic total labeling of P_3 ⨀▒P_(4 ) results in a super (483,3)- P_2 ⨀▒P_(4 )  -antimagic labeling. Both of these examples provide insights into the antimagic properties of corona products.
The Clique Number and The Chromatics Number Of The Coprime Graph for The Generalized Quarternion Group Gayatri, Marena Rahayu; Nurhabibah, Nurhabibah; Aini, Qurratul; Awanis, Zata Yumni; Salwa, Salwa; Wardhana, I Gede Adhitya Wisnu
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 2 (2023): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i2.13099

Abstract

Graph theory can give a representation of abstract mathematical systems such as groups or rings. We have many graph representations for a group, in this study we use the coprime graph representation for a generalized quaternion group to find the numerical invariants of the graph, which are the clique number and the chromatic number. The main results obtained from this study are the clique number of the coprime graph representation for the generalized quaternion group is equal to the chromatic number of the coprime graph representation for the generalized quaternion group for each case of  the order.
The Decomposition of a Finitely Generated Module over Some Special Ring Wardhana, I Gede Adhitya Wisnu
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 6, No 2 (2022): April
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v6i2.6769

Abstract

This research aims to give the decompositions of a finitely generated module over some special ring, such as the principal ideal domain and Dedekind domain. One of the main problems with module theory is to analyze the objects of the module. This research was using a literature study on finitely generated modules topics from scientific journals, especially those related to the module theory. And by selective cases we find a pattern to build a conjecture or a hypothesis, by deductive proof, we prove the conjecture and state it as a theorem. The main result in this study is the decomposition of the finitely generated module is a direct sum of the torsion submodule and torsion-free submodule.  Since the torsion-free module is always a free module over a principal ideal domain, then the torsion-free submodule is a free module. Last, we generalize the ring, from a principal ideal domain, to a Dedekind domain. We found then the torsion-free submodule became a projective module.  Then the decomposition of the finitely generated module is a direct sum of the torsion submodule and the projective submodule. These results should help the researchers to analyze the objects on module theory. 
Co-Authors @ Ismail, Ghazali Semil A.A. Ketut Agung Cahyawan W Abdul Gazir Syarifudin Abdurahim, Abdurahim Adelia Adelia Adelia Adelia, Adelia Aenan Salsabila Afdhaluzzikri, M. Albaracin, Jimboy R. Alimon, Nur Idayu Ambar, Jinan Angamuthu, Manimaran Anisa Agustina Anisa Agustina, Anisa Arisanti, Devia Arzaki Zaget Oasis Asmarani, Evi Yuniartika Aulia, Sita Armi Awanis, Zatta Yumni Ayes Malona Siboro Ayes Malona Siboro Ayes Malona Siboro Baiq Desy Aniska Prayanti Baiq Rika Ayu Febrilia Beni Nungroho Sudiantoro Biswas, Hena Rani Borisman Bertinegara Dara Purnamasari Dara Puspita Anggraeni Devia Arisanti Dewi, Putu Kartika Dina Eka Putri Dwi Noorma Putri Emmy Yuanita Evi Yunartika Asmarani Evi Yuniartika Asmarani Evi Yuniartika Asmarani Evi Yuniartika Asmarani Fadhilah, Rifdah Farwan, Farwan Fathul Maulina Wahidah Febrilia, Baiq Rika Ayu Gambo, Ibrahim Gayatri, Marena Rahayu Ghazali Semil @ Ismail Ghoffari, Lalu Hasan Gilman, M. Afdhol Graha, Syifa Salsabila Satya Haryati, Ida Hijriati, Naimah Hisan, Khairatun Husni, Muhammad Naoval Ida Rohani Ilham Ilham Ilham Ilham Intan Muchtadi Alamsyah Irwansyah Irwansyah Irwansyah Irwansyah Jurnal Pepadu Karang, Gusti Yogananda Laila Hayati Lailia Awalushaumi Lalu Hasan Ghoffari Lalu Riski Wirendra Putra Lalu Riski Wirendra Putra Lestari, Sahin Two M Fauzul M. Afdhol Gilman Malik, Deny Putra Mamika Ujianita Romdhini MAMIKA UJIANITA ROMDHINI Mamika Ujianita Romdhini, Mamika Ujianita Maria Ulfa Masriani Masriani Masriani Masriani Maulana, Fariz Maulana, Muklas Maulida Septiyana MAXRIZAL Miftahurrahman, Miftahurrahman Misuki, Wahyu Ulyafandhie Mufarrihati, Ardelia Muhammad Naoval Husni Muhammad Rijal Alfian Muklas Maulana Munawara Putia Nghiem, Nguyen Dang Hoa Ni Wayan Switrayni Ni Wayan Switrayni Ni Wayan Switrayni Ningsih, Baiq Nila Sari Nur Asmita Purnamasari Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nurhabibah Nuzla Af'idatur Robbaniyyah Oasis, Arzaki Zaget Pradana, Satriawan Pratama, Rendi Bahtiar Pratiwi, Lia Fitta Prof. Dr.I Nengah Suparta,M.Si . PUDJI ASTUTI Purnamasari, Dara Putia, Munawara Putra, Lalu Riski Wirendra Putri Kurnia Chairunnisa Putri, Syaftirridho Putu Kartika Dewi Qurratul Aini Qurratul Aini Qurratul Aini Ramdani, Dewi Santri Rendi Bahtiar Pratama Rina Juliana Rina Juliana Rio Satriyantara Robbaniyyah, Nuzla Af’idatur Rohani, Ida Sabil, M. Ibnu Sahin Two Lestari Sahin Two Lestari Salsabila, Aenan Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Salwa Sarmin, Nor Haniza Satriawan, Didit Semil @ Ismail, Ghazali Siboro, Ayes Malona Siti Raudhatul Kamali Sudiantoro, Beni Nungroho Sudirman Sudirman Surya Hadi Syafitri, Hanna Syaftirridho Putri Tri Dharmayani, Ni Komang Ubaidillah, Moch Rafi Zarkasy Wahidah, Fathul Maulina Widiastuti, Ratna Sari Yatin, Bela Zainun Zata Yumni Awanis Zata Yumni Awanis Zata Yumni Awaris