Claim Missing Document
Check
Articles

Perancangan Aplikasi Pemetaan Fasiltas Kesehatan Di Kabupaten Lebong Berbasis Android Riozi, M Fakhrur; Hidayah, Agung Kharisma; Sonita, Anisya; Sahputra, Eka
Jurnal Media Infotama Vol 20 No 1 (2024): April 2024
Publisher : UNIVED Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37676/jmi.v20i1.5781

Abstract

Health facilities are places where health efforts are carried out. In this research, several problems were found regarding health facility information, such as the official Lebong district website only providing some information on health facilities such as hospitals, health centers, pharmacies. Not all health facility locations are known to the public, whether they come from Lebong Regency or immigrants from Lebong Regency. If you use the Google Maps application, there are still health facility locations that are not registered, so this application can complete data that has not been registered in the Google Maps application. so that the public can know better and make it easier to disburse the location of health facilities. This system was created using the prototyping method, system development process, system implementation and finalization. This application was developed with Kodular. Apart from that, the framework used uses DFD and UI UX Design as examples of application design.
PERANCANGAN SISTEM INFORMASI OBJEK WISATA DI KABUPATEN BENGKULU UTARA BERBASIS WEB Syaputri, Yopita; Kirman, Kirman; Sonita, Anisya; Prabowo, Dedy Agung
Jurnal Media Infotama Vol 20 No 2 (2024): Oktober
Publisher : UNIVED Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37676/jmi.v20i2.6327

Abstract

A design ofweb-based information system oftourism objects in north Bengkulu regency is used as a tool in delivering information on tourism and cultural areas in north Bengkulu regency to people who want to know the tourism areas. It is one form of tourism promotion to attract tourists to visit north Bengkulu. This research is expected to be useful as a medium of information and promotion of tourismpotential in north Bengkulu, so that people will be more familiar with regional tourismplaces. The more tourists who visit, the income of the area and the surrounding community will increase. The method used in this research was the Rapid Application Development (RAD) method. This method includedthe requirements analysis, system design, implementation, testing and maintenance stages, followed by making applications using the PHP and HTML programming languages with MySQL and XAMPP database
Implementation of K-Means Clustering Method in Grouping Best-Selling Building Materials at Sinar Harapan Building Shop Fadila, Aldevia; Sonita, Anisya; Witriyono, Harry; Rifqo, Muhammad Husni
Multidisciplinary Journals Vol. 1 No. 3 (2024): September
Publisher : Universitas Dehasen Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37676/mj.v1i3.529

Abstract

Building materials are all materials both as basic and auxiliary materials needed to build a certain building that are easily available in building stores, one of which is at the Sinar Harapan Building Shop. The purpose of this research is to build a system that can provide information on building materials that are in demand and not in demand by applying the k-means clustering method to help facilitate the management of building material sales. The results of this study have created a system for classifying in-selling and out-of-selling building materials based on the results of calculations using the k-means clustering method by testing 10 samples of building materials which get the results of 3 in-selling building materials and 7 building materials not in demand or less in demand.
PELATIHAN PENGGUNAAN APLIKASI PERKANTORAN MICROSOFT OFFICE PADA ANAK USIA SEKOLAH Raffles, Richard; Nurhayati, Nurhayati; Wijaya, Ardi; Sonita, Anisya
Jurnal Pengabdian Masyarakat Ilmu Komputer Vol. 1 No. 1 (2024): Januari
Publisher : Yayasan Nuraini Ibrahim Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59407/jpmik.v1i1.563

Abstract

ABSTRAK Peran teknologi dan informasi kini sudah sangat diperlukan, apalagi di era revolusi industri 4.0 saat ini. Siswa SDN 57 Koa Bengkulu diharapkan memiliki keterampilan lebih dibandingkan siswa-siswi lainnya. Microsoft Office merupakan salah satu aplikasi perangkat lunak yang biasa digunakan untuk menunjang kegiatan belajar mengajar. Saat ini siswa di SDN 57 Kota Bengkulu telah mempunyai sarana dan prasarana untuk melayani kegiatan belajar mengajar, namun siswa belum dapat menggunakan fitur-fitur yang tersedia pada aplikasi Microsoft Office. Pelatihan ini bertujuan untuk meningkatkan keterampilan mahasiswa dalam menggunakan perangkat lunak Microsoft Office (Microsoft Word dan Microsoft Power Point) untuk mendukung kegiatan belajar mengajar. Kegiatan pengabdian ini bertujuan untuk mendukung siswa SDN 57 Kota Bengkulu dalam aplikasi Microsoft Word dan Microsoft PowerPoint. Dengan adanya kegiatan ini, kami berharap siswa akan lebih mudah mengolah teks dan membuat dokumen presentasi yang bermanfaat sehingga memudahkan proses pembelajaran. Kata Kunci: Ms Office, Komputer, Pelatihan
Penerapan Metode Association Rule Menggunakan Apriori untuk Rekomendasi Penyusunan Rak Buku di Perpustakaan Universitas Muhammadiyah Bengkulu M Rafli Yudhatama; Ardi Wijaya; Dedy Abdullah; Anisya Sonita
Jurnal Multidisiplin Dehasen (MUDE) Vol 3 No 3 (2024): Juli
Publisher : Universitas Dehasen Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37676/mude.v3i3.6263

Abstract

The library is one of the facilities provided by Muhammadiyah University. The Muhammadiyah University Library can provide various kinds of library materials such as textbooks, text books, literature for practicums, general magazines and various other collections. Some book collections can be borrowed or can only be accessed on site. Apriori is an algorithm that is well known for searching frequent item sets using association rule techniques. The a priori algorithm uses knowledge about previously known frequent itemsets to process further information. In the a priori algorithm, to determine the candidates that may appear, it is done by paying attention to the minimum support. The data collection techniques used by the author in this research are interview techniques, observation and literature study. To carry out a bookshelf search application in a library, it begins with the process of inputting the book title, author's name, and publisher through inputting search data. Next, the system will look for a match string which will be processed by the application. If each string is found it will display it as a whole and will provide bookshelf information. The conclusion that can be drawn from the application of the association rule method using a priori for recommendations for arranging bookshelves in the Muhammadiyah University of Bengkulu library, is that you can find the placement of books in the library by applying the association rule method, can distribute books grouped according to scientific discipline categories, and the rapid miner application By using the association rule method, you can also read scientific discipline categories from the same book and the title entered contains the same characters but different writing.
IMPLEMENTASI METODE K-NEAREST NEIGHBOR UNTUK PREDIKSI PENJUALAN PRODUK RUMAH TANGGA TERLARIS Sonita, Anisya; Ayu Lestari
JSAI (Journal Scientific and Applied Informatics) Vol 7 No 3 (2024): November
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v7i3.6350

Abstract

Household products in the Idola 2 Store certainly have a large number, making it difficult for the store to determine which products have the best selling sales. This research aims to determine the best-selling household products that are most likely to sell at Idola 2 Stores using the K-Nearest Neighbor (K-NN) method and to apply the K-Nearest Neighbor (K-NN) method to predict best-selling products by utilizing sales data. This research uses the RAD (Rapid Application Development) system development method which consists of several stages. The results of this study have created a system using the K-NN method in predicting the determination of best-selling household products. Based on the results of the K-NN method process in predicting the best-selling household products, it is obtained from 20 products, there are 5 products that are included in the best-selling household products, namely Motif Glass Jars, Plastic Jars, Foot Mats, Hanger and Multipurpose Shelves. From this data, the Idol 2 Store can predict what products are likely to have good sales or sell well in the next month.
OPTIMALISASI KINERJA DATABASE PADA WEB SIKAWAN UNIVERSITAS MUHAMMADIYAH BENGKULU Putri Dwi L; Tiara Ayu Lestari; Reza Anisa; Meilisa Tri Ulansari; Muhammad Fajri; Yulia Darmi; Anisya Sonita; Sri Ekowati; Rossa Ayuni
Triwikrama: Jurnal Ilmu Sosial Vol. 7 No. 7 (2025): Triwikrama: Jurnal Ilmu Sosial
Publisher : Cahaya Ilmu Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.6578/triwikrama.v7i7.11702

Abstract

Sistem informasi berbasis web memiliki peran penting dalam pengelolaan data akademik dan administratif di perguruan tinggi. Web SIKAWAN merupakan platform yang digunakan untuk menyimpan, mengelola, dan memperbarui data dosen serta karyawan di Universitas Muhammadiyah Bengkulu. Namun, seiring meningkatnya volume data, sistem ini menghadapi tantangan dalam hal efisiensi dan kecepatan akses database. Penelitian ini bertujuan untuk menganalisis dan mengoptimalkan kinerja database Web SIKAWAN agar lebih efisien dan responsif. Metode penelitian yang digunakan adalah pendekatan kualitatif deskriptif dengan teknik pengumpulan data melalui wawancara, observasi, dan studi dokumentasi. Hasil penelitian menunjukan bahwa optimalisasi melalui indeksasi database, normalisasi tabel, dan penggunaan caching dapat meningkatkan efisiensi pengolahan data, mengurangi waktu respon sistem, serta meningkatkan pengalaman pengguna. Implementasi teknik-teknik ini diharapkan dapat meningkatkan kkehandalan sistem dalam mendukung aktivitas akademik dan administrasi universitas. Web-based information systems have an important role in managing academic and administrative data in higher education. Web SIKAWAN is a platform used to store, manage, and update lecturer and employee data at Universitas Muhammadiyah Bengkulu. However, as the volume of data increases, the system faces challenges in terms of efficiency and speed of database access. This research aims to analyze and optimize the performance of the SIKAWAN Web database to make it more efficient and responsive. The research method used is a descriptive qualitative approach with data collection techniques through interviews, observations, and documentation studies. The results showed that optimization through database indexation, table normalization, and the use of caching can improve data processing efficiency, reduce system response time, and improve user experience. The implementation of these techniques is expected to increase system reliability in supporting university academic and administrative activities.
IMPLEMENTASI ALGORITMA NAÏVE BAYES PADA PENGELOMPOKAN ASET FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH BENGKULU Amandha, Lufti; Sonita, Anisya
JSAI (Journal Scientific and Applied Informatics) Vol 3 No 3 (2020): November
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v3i3.1194

Abstract

Perkembangan teknologi informasi sangat berpengaruh dalam pengelolaan data dan penyampaian informasi bagi setiap instansi sehingga mempermudah dalam pengelolaan data yang diolah secara manual menjadi berbasis komputerisasi. Sehingga dengan adanya teknologi informasi yang digunakan dalam bidang pengelompokan atau inventaris aset barang-barang, setiap pencatatan dapat didokumentasikan sebagai barang bukti. Pada Fakultas Teknik Universitas Muhammadiyah Bengkulu juga menerapkan sistem sebagai pengelolaan data asset seperti computer, infokus dan printer, sebagai data inventaris.Dengan menerapkan algoritma Naïve Bayes diharapkan dapat mengetahui atau memprediksi data inventaris atau data aset yang ada. Teorema keputusan bayes itu sendiri adalah pendekatan statistik yang fundamental dalam pengenalan pola (pattern recoginition). Pendekatan ini didasarkan pada kuantifikasi antara berbagai keputusan klasifikasi dengan menggunakan probabilitas dan ongkos yang ditimbulkan dalam keputusan keputusan tersebut. Ide dasar dari bayes adalah menangani masalah yang bersifat hipotesis yakni mendesain suatu klasifikasi untuk memisahkan objek. Sehingga nantinya dalam pembuatan system pengelompokan data asset ini dapat mengetahui data asset yang ada pada Fakultas Teknik Universitas Muhammadiyah Bengkulu.
Klasifikasi Tingkat Kematangan Buah Matoa Menggunakan Metode PCA dan KNN Berdasarkan Warna RGB Rendika Efando; Anisya Sonita
JSAI (Journal Scientific and Applied Informatics) Vol 8 No 2 (2025): Juni
Publisher : Fakultas Teknik Universitas Muhammadiyah Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36085/jsai.v8i2.7851

Abstract

Matoa fruit or in scientific language Pometia Pinnata is a fruit that is quite popular and is spread in several regions. Matoa fruit has several benefits such as for health, processed drinks, and for consumption. However, up to now, matoa fruit farmers are still sorting the quality of ripe matoa fruit using methods that are still manual, which can cause errors and mistakes in sorting the quality of matoa fruit. Based on this problem, this research developed a system that is capable of classifying the maturity level of matoa fruit using RGB feature extraction and using the Principal Component Analysis (PCA) and K-Nearest Neighbor (KNN) methods. This research uses a dataset of 67 data, namely 42 training data and 25 test data consisting of 3 classes, namely raw, mature, and fully cooked. Data classification that applies KNN with the nearest neighbor value, namely K=3, gets an accuracy result of 92%, with 23 image being classified correctly and 2 image being classified incorrectly.
Rancang Bangun Sistem Pendukung Keputusan Tanaman Pangan Kelompok Tani Menggunakan Metode Simple Additive Weighting Fabriandi, Gilang Pramudia; Sonita, Anisya; Khairullah, Khairullah; Mahfuzi, A.R Walad
Jurnal Media Infotama Vol 21 No 1 (2025): April 2025
Publisher : UNIVED Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37676/jmi.v21i1.8201

Abstract

Abstract— Agriculture is a very important sector for the Indonesian economy, where the majority of the population depends on this sector for their livelihood. Farmer groups play a key role in increasing food production and farmer welfare. However, selecting the right type of food crop is often a challenge for farmers because it involves various criteria and factors. Therefore, a decision support system is needed that can help farmer groups in determining optimal food crop choices. This research aims to design and build a decision support system (DSS) for farmer groups using the Simple Additive Weighting (SAW) method. The SAW method was chosen because of its ease in combining various criteria and factors in decision making. It is hoped that the system being built can help farmer groups increase the efficiency and effectiveness of decision making regarding food crop selection. The research results show that the use of the SAW method in SPK is able to provide accurate and reliable recommendations, so that it can support increased productivity and welfare of farmers.
Co-Authors Abdullah, Dedy Achmad, Fariz Ade Ihza dwi Putra Adriansyah, M. Ari Affandi Mussa, Anitya Putri Alan Andeka Amaliah, Asma Amandha, Lufti Andika Putra Anggraini, Laura ANJAYA RIDUANSYAH Ansyori, Adzan Anugrah Ilahi, Puja Apriance, Cici Apriansyah, Eko Saputra Apridiansyah, Yovi Aprilia, Vilda Ardi wijaya Arie Vatresia Arif Susanto Ayu Lestari Aziz, Dzakwan Ammar Beta Yuniarti Charles Roenal Krisubiyantoro Checario, Devano Chindy Erliani Cici Apriance Dandi Sunardi Darnita , Yulia Darnita, Yulia Dedy Abdullah Dedy Abdullah Dedy Agung Prabowo Deslianti, Dwita Deslianti, Dwita Diana Diana Diki Zulfahmi Dwita Deslianti Dwita Deslianti Eka Sahputra Eko Saputra Apriansyah Elni Mutmainnah F Fraternesi Fabriandi, Gilang Pramudia Fadila, Aldevia Febrian Nurtaneo Fikri Ikbal P Fitri Lestari, Fitri Fraternesi, F Handrawijaya, Khairus Syah hidayah, agung kharisma Ika Yurika Sari Imanullah, Muhammad Jefri Zulkarnain Jestika Safitri Juhardi, Ujang Karniawan, Roni Khairullah, Khairullah Khairunnisyah Khairunnisyah Khairunnisyh Khairunnisyh Khairunnisyh, Khairunnisyh Kirman Kirman, Kirman Kurnia Anggriani, Kurnia Laura Anggraini Lukman, Musfirah Putri M Faishal M Khairunnas M Rafli Yudhatama Mahfuzhi, A.R Walad Mahfuzi, A.R Walad Marcelina Novi Zarti MAYANG SARI Meilisa Tri Ulansari Miswanti Yuli Muhammad Fajri Muhammad Husni Rifqo Muhira Dzar Faraby, Muhira Dzar Mukhlizar, Mukhlizar Muntahanah Muntahanah Muntahanah, Muntahanah Mustika Mustika Nofriansyah Praja Nurhayati Nurhayati Pahrizal Pahrizal Pahrizal Pahrizal, Pahrizal Pariza, Rahmat Pedro Ginal Victori Pedro Putra, Erwin Dwik Putra, Erwin Dwika Putri Dwi L Putri, Tiara Eka Raffles, Richard Rahmalia, Rahmalia Rahman Fadli Tanjung Rahmat Pariza Ramadhan Saputra Alpani Rendika Efando Reza Anisa Ria Elda Fitri RIDUANSYAH, ANJAYA Rifqo, Muhammad Husni Rinni Rio Eka Prayuda Riozi, M Fakhrur Rizki Fitrah Fardianitama Robian Kundari Ronaldo, Ronaldo Rossa Ayuni Rozali Toyib Sahputra, Eka Sandi, Zainove Saputra, Surya Ade Sirad, Mochammad Apriyadi Hadi sofyan sofyan Sri Ekowati Sri Handayani Sri Handayani sumardi Surya Ade Saputera Susilo Dwi Prabowo Syaputra, Weki Syaputri, Yopita Tanjung, Rahman Fadli Thaha, Sarma Tiara Ayu Lestari Toyib, Rozali Tri Putra, Bagus Weki Syaputra Wijaya, Ardi Witriyono, Harry Yoan Hadi Kusuma Admaja Yuli Asmi Rahman Yulia Darmi Yulia Darnita Yuza Reswan Zahra, Syakira Az Zarti, Marcelina Novi