p-Index From 2021 - 2026
3.499
P-Index
This Author published in this journals
All Journal Journal of Education and Learning (EduLearn) Journal on Mathematics Education (JME) Jurnal Infinity Kreano, Jurnal Matematika Kreatif-Inovatif Tadris: Jurnal keguruan dan Ilmu Tarbiyah Jurnal Pembelajaran Berpikir Matematika Jurnal Elemen Journal of Research and Advances in Mathematics Education Jurnal Kajian Pembelajaran Matematika APOTEMA : Jurnal Program Studi Pendidikan Matematika AKSIOLOGIYA : Jurnal Pengabdian Kepada Masyarakat ELSE (Elementary School Education Journal) : Jurnal Pendidikan dan Pembelajaran Sekolah Dasar MATEMATIKA DAN PEMBELAJARAN International Journal on Emerging Mathematics Education Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah di Bidang Pendidikan Matematika MAJAMATH: Jurnal Matematika dan Pendidikan Matematika International Journal of Active Learning M A T H L I N E : Jurnal Matematika dan Pendidikan Matematika JPMI (Jurnal Pembelajaran Matematika Inovatif) Jurnal Riset Pendidikan dan Inovasi Pembelajaran Matematika (JRPIPM) Jurnal Abdi: Media Pengabdian Kepada Masyarakat Journal of Applied Science, Engineering, Technology, and Education Rainstek : Jurnal Terapan Sains dan Teknologi MATHunesa: Jurnal Ilmiah Matematika Edukasia: Jurnal Pendidikan dan Pembelajaran Enrichment: Journal of Multidisciplinary Research and Development Journal An-Nafs: Kajian Penelitian Psikologi Journal of Mathematical Pedagogy (JOMP) Jurnal Infinity Mathematics Education Journal Journal on Mathematics Education
Claim Missing Document
Check
Articles

GRAF YANG TERKAIT DENGAN UP-ALJABAR Amalia, Nurul; Lukito, Agung
MATHunesa: Jurnal Ilmiah Matematika Vol. 12 No. 1 (2024)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v12n1.p21-29

Abstract

Dalam artikel ini dikenalkan konsep graf sederhana tak berarah yang berkaitan dengan UP-aljabar komutatif, disebut graf UP-aljabar, dengan himpunan titiknya merupakan himpunan elemen UP-aljabar komutatif. Juga dikenalkan graf kelas ekuivalensi dari UP-aljabar komutatif dan dibuktikan beberapa hasil terkait berdasarkan sifat graf UP-aljabar. Di samping itu, ditunjukkan bahwa jika graf UP-aljabar adalah bipatrit lengkap, maka graf kelas ekuivalensi dari UP-aljabar merupakan sebuah sisi. Demikian pula, akan disajikan satu algoritma untuk memeriksa apakah suatu himpunan dengan operasi biner tertentu merupakan UP-aljabar atau bukan. Kata Kunci: UP-aljabar, UP-ideal, ideal annihilator, graf kelas ekuivalensi.
GRAF YANG TERKAIT DENGAN UP-ALJABAR Amalia, Nurul; Lukito, Agung
MATHunesa: Jurnal Ilmiah Matematika Vol. 11 No. 3 (2023)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v11n3.p524-532

Abstract

Dalam artikel ini dikenalkan konsep graf sederhana tak berarah yang berkaitan dengan UP-aljabar komutatif, disebut graf UP-aljabar, dengan himpunan titiknya merupakan himpunan elemen UP-aljabar komutatif. Juga dikenalkan graf kelas ekuivalensi dari UP-aljabar komutatif dan dibuktikan beberapa hasil terkait berdasarkan sifat graf UP-aljabar. Di samping itu, ditunjukkan bahwa jika graf UP-aljabar adalah bipatrit lengkap, maka graf kelas ekuivalensi dari UP-aljabar merupakan sebuah sisi. Demikian pula, akan disajikan satu algoritma untuk memeriksa apakah suatu himpunan dengan operasi biner tertentu merupakan UP-aljabar atau bukan. Kata Kunci: UP-aljabar, UP-ideal, ideal annihilator, graf kelas ekuivalensi.
Ideal Hibrida dalam BCK/BCI-Aljabar Halimah, Umi; Lukito, Agung
MATHunesa: Jurnal Ilmiah Matematika Vol. 12 No. 1 (2024)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v12n1.p169-180

Abstract

Analisis Kemampuan Spatial Visualization Siswa Sekolah Dasar dalam Pemecahan Masalah Geometri: Ditinjau dari Kemampuan Matematika Tingkat Tinggi Lestari, Dinar Dwi Putri; Budiarto, Mega Teguh; Lukito, Agung
ELSE (Elementary School Education Journal) : Jurnal Pendidikan dan Pembelajaran Sekolah Dasar Vol 5 No 1 (2021): FEBRUARI
Publisher : UNIVERSITAS MUHAMMADIYAH SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/else.v5i1.7371

Abstract

Abstrak: Kemampuan spasial sangat berkaitan erat dengan geometri. Kemampuan spasial mendukung pemahaman tentang dunia geometris. Penelitian ini bertujuan untuk mendeskripsikan profil kemampuan spasial siswa SD khususnya spatial visualization dengan kemampuan matematika tinggi dalam memecahkan masalah geometri. Subjek dalam penelitian ini adalah siswa kelas 6  SD. Hasil penelitian yang berpendekatan kualitatif ini menggunakan indikator kemampuan spasial yang diadaptasi dari penelitian Lawrie, et al. (2016)  dilaksanakan dengan mengggunakan metode triangulasi waktu yakni membandingkan hasil tes  dari siswa beserta wawancaranya dengan hasil tes yang setara beserta wawancaranya pada waktu yang berbeda. Hasil penelitian ini menunjukkan bahwa siswa kemampuan tinggi mempunyai kemampuan spatial visualization yang berbeda dalam menyelesaikan tugas pemecahan masalah geometri.Kata Kunci: Kemampuan Spasial, Spatial Visualization, Geometri Sekolah Dasar, Matematika SD Abstract: Spatial ability is closely related to geometry. Spatial abilities support understanding of the geometric world. This study aims to describe the profile of elementary school students' spatial abilities, especially spatial visualization, with high mathematical skills in solving geometric problems. The subjects in this study were students of grade VI SD. The results of this research using a qualitative approach using spatial ability indicators adapted from Lawrie's research were carried out by using the time triangulation method, namely comparing test results from students and their interviews with test results that were equivalent to tests and interviews at different times. The results of this study indicate that high ability students have different spatial visualization abilities in solving geometry problem solving tasks.Keywords: Spatial Ability, Spatial Visualization, Elementary School Geometry, Elementary Mathematics
Mathematics belief impact on metacognition in solving geometry: Middle school students Suliani, Mega; Juniati, Dwi; Lukito, Agung
Journal of Education and Learning (EduLearn) Vol 18, No 2: May 2024
Publisher : Intelektual Pustaka Media Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/edulearn.v18i2.21110

Abstract

Mathematical beliefs and metacognitive knowledge play significant roles in solving mathematical problems; thus, this study aims to investigate the influence of middle school students' beliefs on their metacognitive knowledge when solving geometry problems. This study utilizes both quantitative and qualitative research methods. A linear regression test was used to determine the effect of middle school students' beliefs on their metacognitive knowledge. The results of the quantitative research analysis were followed up with a qualitative research approach to describe the metacognitive knowledge of students who have high and low confidence in solving geometric problems. This research involved 352 middle school students in the Tarakan area. Based on the results of linear regression, it is known that the beliefs of middle school students have a positive effect on their metacognitive knowledge when solving geometric problems. In addition, it was found that students with different beliefs could solve a given geometry problem, but the approach to solving it varied among subjects. Middle school students have diverse beliefs, but these variations do not affect their capacity to apply their metacognitive knowledge at every stage of solving mathematical problems.
Mathematical Creativity: A Systematic Review of Current Research on Eye-Tracking Technology Farman; Siswono, Tatag Yuli Eko; Lukito, Agung; Dewi, Ratna Sari; Ndayizeye, Oscar; Hali, Fitriyani
Journal of Applied Science, Engineering, Technology, and Education Vol. 7 No. 3 (2025)
Publisher : PT Mattawang Mediatama Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.asci4167

Abstract

Recent empirical research on mathematical creativity using eye-tracking (ET) technology has faced challenges in developing comprehensive overviews due to the diversity of tools, task types, ET metrics, and identification methods. Thus, this systematic review attempts to examine studies that focus on mathematical creativity and incorporate ET technology. Guided by Newman and Gough’s seven-step approach, a Scopus database search covering publications up to 2024 identified five eligible empirical studies collected for this study. The review reveals that researchers employed two primary types of eye trackers: screen-based trackers, which are affordable and unobtrusive, and eye-tracking glasses, which enable participants to engage in paper-and-pencil tasks while moving naturally. To stimulate creative thinking, the studies utilized open-ended mathematical tasks—particularly geometry-based multiple solution tasks (MST) and visual modeling tasks—that encourage divergent exploration. In analyzing creative processes, researchers combined ET metrics such as fixation duration, fixation count, and scan paths with gaze-overlaid videos, offering complementary insights into visual attention patterns and idea development. Additionally, several studies integrated ET with stimulated recall interviews (SRI), allowing participants to reflect on their strategies and deepening the interpretation of cognitive processes. This methodological combination effectively captures both visual behaviors and participants’ reflections, highlighting the complexity of creative thinking in mathematics and offering guidance for future research and instructional practice.
Komponen Penting Representasi Internal Pada Berpikir Spasial: Representasi Internal: Distorsi: Abstraksi: Berpikir Spasial Fiantika, Feny Rita; Budayasa, I ketut; Lukito, Agung
Jurnal Math Educator Nusantara: Wahana Publikasi Karya Tulis Ilmiah di Bidang Pendidikan Matematika Vol 3 No 1 (2017): Volume 3 No 1 Tahun 2017
Publisher : Program Studi Pendidikan Matematika, Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (251.311 KB) | DOI: 10.29407/jmen.v3i1.782

Abstract

Tulisan ini bertujuan untuk memaparkan komponen representasi internal. Terdapat dua komponen penting pada representasi internal yaitu distorsi dan abstraksi. Dalam tulisan ini ditunjukkan bagaimana penghapusan sebuah realita yang terjadi pada proses abstraksi dan bagaimana memutuskan sebuah distorsi dalam sebuah proses berpikir spasial. Terdapat dua jenis abstraksi yaitu abstraksi material dan abstraksi sebagai proses omission (penghapusan).Tugas pemecahan masalah geometri diberikan untuk mendeskripsikan bagaimana siswa sekolah dasar melakukan proses abstraksi dan distorsi pada sebuah reprentasi internal.