Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Robotics and Control Systems

Revolutionizing Anemia Classification with Multilayer Extremely Randomized Tree Learning Machine for Unprecedented Accuracy Saputra, Dimas Chaerul Ekty; Muryadi, Elvaro Islami; Futri, Irianna; Win, Thinzar Aung; Sunat, Khamron; Ratnaningsih, Tri
International Journal of Robotics and Control Systems Vol 4, No 2 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i2.1379

Abstract

Anemia is a prevalent global health issue that is characterized by a deficit in red blood cells or low levels of hemoglobin. This condition is influenced by various causes, including nutritional inadequacies, chronic diseases, and genetic predisposition. The incidence of the phenomenon exhibits variation across different geographical regions and demographic groups. This pioneering research investigates the identification and classification of anemia, potentially leading to transformative advancements in the discipline. The classification of anemia encompasses four distinct groups, namely Beta Thalassemia Trait, Iron Deficiency Anemia, Hemoglobin E, and Combination. This comprehensive categorization offers clinicians a more refined and detailed comprehension of the condition. The integration of deep learning and machine learning in the Multilayer Extremely Randomized Tree Learning Machine (MERTLM) model represents a departure from traditional approaches and a significant advancement in the field of medical categorization accuracy. The MERTLM approach integrates randomized tree with multilayer extreme learning machine (M-ELM) representation learning, hence emphasizing the possibility of interdisciplinary collaboration in the field of diagnostics. In addition to its impact on anemia, artificial intelligence (AI) is playing a significant role in revolutionizing medical diagnosis by emphasizing the integration of innovative methods. This study utilizes the combined capabilities of machine learning and deep learning to improve accuracy. Notably, recent developments have resulted in an exceptional accuracy rate of 99.67%, precision of 99.60%, sensitivity of 99.47%, and an amazing F1-Score of 99.53%. This study represents a significant advancement in the field of anemia research, providing valuable insights that may be applied to intricate medical issues and enhancing the quality of patient care.
Co-Authors ADAM FERDIANSYAH Adnan, Muhammad Luthfi Afiahayati Afiahayati, Afiahayati AGUS AGUS Agustiawan, Agustiawan Amar Akbar Ambarwati, Tri Juningaju Andini, Yusria Annis Catur Adi Antariksa, Putri Mayang Sari Arijadi, Desi Astutik, Widya Ayu Sari Ning Ati Br. Karo, Dina Andriani Budi Mulyono Caibigan, Ritchie Natuan Chatarina Umbul Wahyuni Dian Nugraheni Diannisa Ikarumi Dimas Chaerul Ekty Saputra Donytra Arby Wardhana Dyah Aruming Tyas Ellsyana Erdyan Romadeni putri Elna, Nandara Priyanti Fahma, Hilmia Faisal Ibnu Fardhiasih Dwi Astuti Fatimah, Bunga Futri, Irianna Hadi Prayitno, Hadi Harahap, Nur Imma Hari Basuki Notobroto Harmaniati, Harmaniati Heriyanto Putri, Rona Hafida Heriyanto, Moch Junaidy Ibnu, Faizal Ifa Roifah Ima Rahmawati Imam Zainuri Indah Lestari, Indah Indra Lesmana Indra Yulianti Iwan Dwiprahasto La Tabari, Muhammad Fadhlan Lutfi Wahyuni Mahardika Agus Wijayanti Mariadi, M. Meilinawati, Elies Miftahurrahmi, Rofifah Muhammad Sajidin Muliasih, Mulat Mulyadi Mulyadi Mulyati Mulyati Muryadi, Elvaro Islami Niken Satuti Nur Handayani Nilam Purwa Seven, Nilam Nina Widyaningrum Nisa, Afifah Khairu Pagan, Muasir Phann, Raksmey Prajna Paramita, Prajna Putri, Rona Hafida Heriyanto Retnowati, Jajuk Rina Nur Hidayati Ristya Widi Endah Yani Riza Anama, Riza Rizki A. Gumilang Rodhi Hartono Rodhi Hartono Rosalia, Sabella Rahmawati, Rhea Santoso, Griselda Elisse Sasangka, Bambang Sismindari . Sitawati, Andini Dyah siti indatul laili, siti indatul Siti Mas Miranda Soewono Soewono Soewono, Soewono Sunat, Khamron Supargiyono - Supatmini, Erna Suryono Yudha Patria Sutaryo Sutaryo Titis Murti Utami, Titis Tri Peni Tri Peni, Tri Tria Wahyu Ningrum Tristifany, Annisa Tun, Su Sandi Hla Usi Sukorini Usman, Muhammad Alvin Ramadhan Widiyanti, Ayu Tri Widya Asmara Widyasari, Vita Wijayanti, Lumastari Ajeng Win, Thinzar Aung Windarwati, Windarwati Windu Santoso, Windu Yanasta Yudo Pratama Yusnaini Yusnaini Zakiyah, Nurul Zakiyah, Nurul Zamroni, Asroful Hulam