Claim Missing Document
Check
Articles

Fitur Length Of Edge Dan Moment Invarian Untuk Gesture Recognition Dengan Menggunakan Kinect Untuk Kontrol Lampu MP, Rekyan Regasari; Setiawan, Budi Darma; Arwani, Issa
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2 No 1: April 2015
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (805.673 KB) | DOI: 10.25126/jtiik.201521133

Abstract

AbstrakTeknologi Kinect adalah teknologi yang dikembangkan untuk game. Kinect memungkinkan pemain game mengontrol permainan dengan menggunakan gerakan dan suara. Hal ini dikarenakan di dalam Kinect terdapat 3 hardware yang bekerja bersama-sama. Tiga hardware tersebut yaitu color VGA video camera, sensor kedalaman, dan multi array microphones. Karena itu, penelitian ini mencoba mengembangkan sensor Kinect untuk keperluan mendeteksi telapak tangan dan gesturnya untuk digunakan sebagai kontrol lampu. Hal ini dilakukan dengan menambahkan beberapa proses pengolahan citra. Pengenalan telapak tangan, menggunakan sensor VGA camera dan depth camera dalam Kinect. Ketika seorang pengguna menjulurkan tangannya kearah sensor, kemudian mengangkat jarinya maka program akan bereaksi. Jika 2 jari yang diangkat maka program akan mengaktifkan saklar padam. Sedangkan jika 5 jari yang diangkat, maka program akan mengaktifkan saklar hidup. Dalam penelitian ini ada 2 fitur yang digunakan dan dibandingkan hasilnya. Fitur yang digunakan adalah fitur Moment Invariant dan Length of Edge. Hasil lebih baik diberikan jika pengenalan dilakukan dengan menggunakan Length of Edge. Dari seluruh data uji yang dipakai, untuk pengenalan dengan menggunakan fitur Length of Edge, akurasi maksimal diperoleh sebesar 100%, sedangkan  dengan menggunakan fitur Moment Invariant, akurasi maksimal diperoleh sebesar 80%.Kata kunci: Moment Invarian, Length of Edge, gesture telapak tanganAbstractKinect is a technology developed for game. Kinect allows players to control game play by using movement and sound. This is because Kinect has 3 hardware that work together. The three hardware are VGA video camera, depth sensor and multi-array microphones. Therefore, this study attempts to use Kinect sensor for detecting the palm's gestures and use them as a light control. This is done by adding some image processing technique. The palm's gesture detection is done by using the VGA camera and depth camera in Kinect Sensor. When a user sticking his hand out and raise his fingers, then program will gives response. If 2 fingers are raised, program will activate off switch, while if 5 fingers are raised, program will activate on switch. There are two features are used in this study, and the results are compared. The features are Moment Invariant and Length of Edge. Better results given by recognition using the Length of Edge. From all the test data used, recognition using Length of Edge give 100% accuracy, while recognition using Moment Invariant features, give 80% in acuracy.Keywords: Moment Invarian, Length of Edge, palm gesture
Mendeteksi Jenis Burung Berdasarkan Pola Suaranya Setiawan, Budi Darma; Cholissodin, Imam; Putri, Rekyan Regasari Mardi
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 3 No 2: Juni 2016
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1032.704 KB) | DOI: 10.25126/jtiik.201632183

Abstract

AbstrakIlmuwan biologi terutama di bidang biodifersitas, terus melakukan penelitian tentang spesies hewan yang ada di dunia. salah satu hewan yang spesiesnya memiliki banyak variasi adalah burung. Tiap jenis burung memiliki perbedaan-perbedaan, mulai dari bentuk anggota tubuhnya, prilakunya, makanannya hingga suaranya. Ilmuwan sering juga mengalami kesulitan untuk melakukan pengamatan di alam. Misalnya, untuk mengetahui spesies burung apa saja yang ada di suatu daerah, mereka harus hadir di suatu wilayah, dan menelusuri setiap pelosok. kadang kala kehadiran mereka di tempat tersebut dalam jangka waktu lama, malah mengusik burung yang ada, dan burung-burung malah pergi meninggalkan tempat, sebelum berhasil diamati. Salah satu cara untuk mendeteksi burung apa saja yang ada di suatu wilayah, tanpa harus mengusik keberadaan burung adalah dengan menggunakan alat bantu. Bisa dengan menggunakan kamera video untuk mengambil gambar lingkungan sekitar, atau dengan perekam suara, untuk merekam suara burung yang ada di sana. Untuk itu penelitian ini ditujukan untuk membuat sebuah pengklasifikasi suara burung secara otomatis. Fitur yang digunakan adalah rhythm, pitch, mean, varian, min, max, dan delta  dari suara burungnya. dari hasil klasifikasi 4 jenis burung, didapatkan hasil rata-rata akurasi terbaik sebesar 88.82%. Kata Kunci : suara burung, klasifikasi, rhythm, pitchAbstractMany of Biologi scientist, especially in the field of biodiversity, conduct research on the animal species that exist in the world. One of the animal which is largely diverse in species is bird. Each species of birds have differences, from the shape of his body, his behavior, his food to it's voice. Scientists often find it difficult to make observations in nature. For example, to determine which species of birds present in an area, they should be present in an area, and explore every corner. sometimes their presence in that place for a long time, even disturb the bird, and they leaving the place, before been observed. One way to detect any bird that is in an area, without having to disturb the presence of birds is to use the automatic tools. For example to use a video camera to take pictures of the surrounding environment, or with voice recorders to record the sound of the birds that were there. This study is aimed to create a classifier bird sound automatically. Features used are rhythm, pitch, mean, variance, min, max, and delta of the bird sound samples. of the results of the classification of four types of birds, showed the best average of accuracy is 88.82%. Key Word : bird song, classification, rhythm, pitch.
Registrasi Citra Dental Menggunakan Feature From Accelerated Segment Test dan Local Gabor Texture For Iterative Point Correspondence Supianto, Ahmad Afif; Setiawan, Budi Darma
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 4 No 4: Desember 2017
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (985.536 KB) | DOI: 10.25126/jtiik.201744503

Abstract

AbstrakRegistrasi citra di bidang periodontal telah dikembangkan untuk melakukan evaluasi terhadap tulang alveolar. Masalah yang disebabkan oleh kesalahan saat ekstraksi fitur atau oleh degradasi gambar bisa timbul pada proses pencocokan fitur. Selain itu, teknik registrasi citra yang didasarkan pada fitur seperti titik, identifikasi tepian (edges), kontur, atau fitur yang lain yang biasa digunakan untuk membandingkan gambar dan kemudian memetakannya merupakan teknik yang sangat sensitif terhadap keakuratan pada tahap ekstraksi fitur. Dari kedua argumen ini, maka diperlukan teknik ekstraksi fitur yang tangguh untuk mencegah terjadinya kesalahan pada proses pencocokan fitur sehingga mendapatkan hasil registrasi citra yang akurat. Pada penelitian ini, diusulkan metode baru untuk registrasi citra. Metode yang diusulkan menggunakan metode ekstraksi fitur yang efektif terhadap akurasi dan efisien terhadap waktu komputasi dengan menerapkan Learning Features, yaitu Feature from Accelerated Segment Test (FAST) sebagai metode ekstraksi fitur. Selain itu, akan dilakukan pengembangan terhadap proses pencocokan fitur dengan menerapkan Local Gabor Texture (LGT) pada algoritma Iterative Point Correspondence (IPC) untuk melakukan registrasi pada citra dental periapikal. Uji coba dilakukan terhadap 8 citra grayscale dental periapikal dan berhasil melakukan registrasi citra  pada citra dental periapikal dengan nilai akurasi rata-rata diatas 93% dengan jumlah iterasi minimal mulai dari 400 iterasi.Kata kunci: registrasi citra, learning feature, local gabor texture, iterative point correspondence, citra dental periapikalAbstractImage registration in the periodontal field has been developed to evaluate alveolar bones. Problems caused by errors during feature extraction or by image degradation can arise in feature matching process. In addition, image registration techniques that are based on features such as points, identification of edges, contours, or other features commonly used to compare images and map them are very sensitive techniques for accuracy at the feature extraction stage. From both of these arguments, a robust feature extraction technique is needed to prevent mistakes in the feature matching process to get image registration results accurately. In this study, a new method for image registration is proposed. The proposed method uses an effective feature extraction method for accuracy and efficient computing time by applying learning features, which is Feature from Accelerated Segment Test (FAST) as a feature extraction method. In addition, a feature-matching process will be developed by applying Local Gabor Texture (LGT) to the Iterative Point Correspondence (IPC) algorithm to register on the periapical dental images. The experiments were conducted on 8 grayscale dental periapical images and successfully registered the image in periapical dental image with an average accuracy more than 93% with a minimum iteration count starting from 400 iterations.Keywords: image registration, learning feature, local gabor texture, iterative point correspondence, dental periapical images
Genetic Fuzzy System untuk Klasifikasi Tutupan Lahan Berdasarkan Foto Udara Unmanned Aerial Vehicle (UAV) Setiawan, Budi Darma; Rusydi, Alfi Nur
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 6: Desember 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023107554

Abstract

Pengamatan terhadap tata letak sebuah wilayah, terutama wilayah berpenduduk, penting dilakukan untuk mengetahui perkembangan dan perubahan yang terjadi. Salah satu pendekatan yang dapat digunakan untuk pengamatan perkembangan suatu wilayah dari waktu ke waktu adalah dengan dengan melihat perubahan tutupan lahan (land cover) secara spasial dengan menggunakan citra foto udara. Foto udara yang mencakup sebuah wilayah dianalisis dengan mengelompokan jenis tutupan lahan atau dikenal dengan land cover classification (klasifikasi tutupan lahan). Metode klasifikasi yang digunakan adalah dengan genetic fuzzy system, yaitu metode klasifikasi dengan menggunakan sistem fuzzy yang aturannya dan fungsi keanggotaannya dioptimasi dengan menggunakan algoritma genetika. Proses metode ini terdiri dari dua tahap yaitu training process, untuk mencari aturan fuzzy yang baik, dan kemudian dilanjutkan dengan tuning process, yaitu proses untuk menggeser batasan nilai pada fungsi keanggotaan himpunan fuzzy yang digunakan. Input program ini adalah nilai red (R), green (G), dan blue (B) dari tiap pixel di dalam citra, dan outputnya adalah kelas pixel yang dikelompokkan (tanah, air, vegetasi, bangunan, dan jalan). Hasil penelitian menunjukkan bahwa nilai fitness tertinggi yang diperoleh adalah hingga 0.84 atau 84%.   Abstract Observation of the layout of an area, especially populated areas, is important to monitor what has been changed during the time period. To observe the development of an area from time to time, one approach that can be done is to observe land cover changes from above. Aerial imagery of an area is analyzed by grouping some subareas based on their land cover types or known as land cover classification. This study proposed the genetic fuzzy system to classify each pixel in the image. The genetic fuzzy system is a classification method using a fuzzy system whose membership function is optimized using a genetic algorithm. The process consists of two stages, namely the training process, to find good fuzzy rules, and then proceed with tuning processes, namely the process of shifting the value constraints on the membership function of the fuzzy set used. The input of this program is the red (R), green (G), and blue (B) values of each pixel in the image, and the output is the class in which the pixels are grouped (soil, water, vegetation, buildings, and roads). From the experimental results, the highest fitness value was obtained up to 0.84 or 84%.
Klasifikasi Penyakit Alzheimer Pada Citra MRI Menggunakan Pretrained VGG-19 dan Pengolahan Citra CLAHE Sutrisna, Naufal Putra; Muflikhah, Lailil; Setiawan, Budi Darma
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 4 (2025): April 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penyakit Alzheimer adalah gangguan neurologis yang memengaruhi sistem saraf di otak dan menjadi salah satu penyebab utama penurunan fungsi kognitif. Dalam mendeteksi Alzheimer, citra Magnetic Resonance Imaging (MRI) menjadi salah satu alat diagnostik yang efektif karena mampu menampilkan detail anatomi otak dengan jelas. Namun, kualitas citra yang rendah dapat memengaruhi performa model dalam analisis citra medis, sehingga penggunaan metode Contrast Limited Adaptive Histogram Equalization (CLAHE) diterapkan untuk meningkatkan kualitas citra. Salah satu pendekatan yang dapat digunakan untuk mengolah data MRI adalah deep learning. Penelitian ini menggunakan pendekatan deep learning berbasis arsitektur pretrained VGG-19. Arsitektur ini dikenal sebagai salah satu yang terbaik dalam klasifikasi gambar, khususnya untuk tugas pencitraan medis seperti MRI. Penelitian ini diawali dengan pemrosesan citra menggunakan teknik pengolahan citra CLAHE dengan konfigurasi parameter clip limit sebesar 1 dan tile grid sebesar 2. Model dilatih menggunakan optimizer Adam dan learning rate sebesar 0,001. Hasil penelitian menunjukkan bahwa model mencapai nilai F1 Score sebesar 93,91%, dengan performa terbaik dalam mengklasifikasikan data minoritas. Penelitian ini menunjukkan keberhasilan dalam melakukan kombinasi arsitektur VGG-19 dan pengolahan citra CLAHE untuk klasifikasi Alzheimer secara akurat.
Deteksi Mutasi Epidermal Growth Factor Receptor pada Kanker Paru Menggunakan Extreme Gradient Boosting Nurfansepta, Amira Ghina; Muflikhah, Lailil; Setiawan, Budi Darma
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 4 (2025): April 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kanker paru adalah salah satu jenis kanker paling umum di Indonesia. Mutasi pada gen epidermal growth factor receptor (EGFR) berperan penting dalam menentukan strategi pengobatan, tetapi deteksinya terkendala teknologi seperti polymerase chain reaction (PCR) dan biaya yang tinggi. Penelitian ini bertujuan mengembangkan model berbasis Extreme Gradient Boosting (XGBoost) untuk deteksi mutasi EGFR yang lebih efisien dan terjangkau. Dataset berasal dari rekam medis pasien kanker paru di Rumah Sakit Dr. Saiful Anwar Malang (2018-2019) dan mencakup hasil tes mutasi serta morfologi kanker. Data diproses menggunakan KNN Imputer untuk missing value, IQR untuk outlier, seleksi fitur dengan feature importance XGBoost, dan resampling dengan SMOTE. Model dioptimalkan menggunakan grid search dengan hyperparameter terbaik: gamma 0, learning rate 0,3, max depth 3, n estimators 50, dan reg lambda 1. Hasil menunjukkan akurasi rata-rata 0,844 dan AUC 0,945 pada validasi serta akurasi dan AUC sempurna, yaitu 1 pada data uji. Model ini juga menonjolkan 10 fitur penting, termasuk metastasis tulang, stadium kanker, dan lain sebagainya. Model XGBoost yang dioptimalkan diharapkan membantu deteksi dini dan meningkatkan aksesibilitas pengobatan kanker paru di Indonesia.
Kinerja Deteksi Tautan Website Phishing Menggunakan Isolation Forest Yuhand Pramudita, Rezzy; Setiawan, Budi Darma; Data, Mahendra
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 10 (2025): Oktober 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Ancaman dari serangan phishing yang terus meningkat dan berkembang pesat menuntut adanya metode deteksi yang lebih dinamis dan efisien dibandingkan pendekatan tradisional berbasis blacklist yang tidak efektif terhadap serangan baru. Selain itu, penggunaan machine learning dengan metode supervised learning-pun memiliki keterbatasan dalam menghadapi data yang tidak seimbang (class imbalance) dan adanya serangan zero-day. Penelitian ini bertujuan untuk menganalisis efektivitas dari algoritma Isolation Forest sebagai metode unspervised anomaly detection untuk mengidentifikasi tautan website phishing, serta menguji pengaruh hyperparameter n_trees dan sample size terhadap kinerjanya. Penelitian ini menggunakan pendekatan kuantitatif eksperimental pada dataset PhiUSIIL Phishing URL. Model akan dievaluasi menggunakan skema k-fold cross validation dengan dua metode pencarian threshold yang berbeda (TPR-based dan contamination-based), serta diuji pada kondisi data latih seimbang dan tidak seimbang. Hasil penelitian ini menunjukkan bahwa Isolation Forest efektif dalam melakukan deteksi, terutama saat dilatih menggunakan data yang tidak seimbang yang memiliki proporsi data normal jauh lebih banyak daripada data phishing. Kinerja terbaik yang dicapai menghasilkan F1-Score 0,93, sensitivity 0,95, dan specificity 0,92. Selain itu, hyperparameter sample_size terbukti berpengaruh signifikan terhadap performa, sedangkan n_trees berperan dalam menstabilkan hasil prediksi. Lalu, dibandingkan dengan One-Class SVM, Isolation Forest terbukti lebih unggul dalam hal F1-Score, specificity, dan efisiensi waktu komputasi. Untuk itu, ditarik kesimpulan bahwa algoritma Isolation Forest merupakan salah satu solusi yang akurat, efisien, dan andal dalam mendeteksi tautan phishing dengan mendekatan anomaly detection.
Klasifikasi Emosi Pada Pengemudi Menggunakan Arsitektur GhostNetV2 dengan Coordinate Attention Ramadhianti, Fatiha; Fitra Abdurrachman Bachtiar; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 13 (2025): Publikasi Khusus Tahun 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Naskah ini akan diterbitkan di Journal of Integrated Engineering (IJIE)
Klasifikasi Dialogue Act menggunakan Arsitektur Sequence-to-Sequence dan Bidirectional Long Short Term Memory Lathania, Laela Salma; Fitra Abdurrachman Bachtiar; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 13 (2025): Publikasi Khusus Tahun 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Naskah ini akan diterbitkan di JTIIK
Klasifikasi Intrusi pada Jaringan Menggunakan Algoritma Gradient Boosting Neural Network Wildannantha, Jawadi Ahmad; Data, Mahendra; Setiawan, Budi Darma
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 9 No 13 (2025): Publikasi Khusus Tahun 2025
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Naskah ini akan diterbitkan di Konferensi Nasional SENTRIN 2025
Co-Authors Abdul Fatih Achmad Basuki Achmad Fahlevi Addin Sahirah, Rafifa Adinugroho, Sigit Aditya Chandra Nurhakim Aditya Kresna Bayu Arda Putra Agung Nurjaya Megantara Agus Wahyu Widodo Ahmad Afif Supianto Akhmad Eriq Ghozali Akmal Subakti Wicaksana Alfi Nur Rusydi Almira Syawli, Almira Amaliah Gusfadilah Andhi Surya Wicaksana Andika Harlan Angga Dwi Apria Rifandi Anjasari, Ni Luh Made Beathris Aria Bayu Elfajar Asghany, Yusrian Ashidiq, Muhammad Fihan Azmi Makarima Yattaqillah Baihaqi, Galih Restu Barlian Henryranu Prasetio Bayu Rahayudi Bintang, Tulistyana Irfany Budi Santoso Cahyo Adi Prasojo Candra Dewi Candra Dewi Chelsa Farah Virkhansa Cindy Inka Sari Cinthia Vairra Hudiyanti Civica Moehaimin Dhewanty Deby Chintya Dellia Airyn Delpiero, Rangga Raditya Dewi, Buana Dhan Adhillah Mardhika Dian Eka Ratnawati Diva, Zahra Dwi Anggraeni Kuntjoro Dwi Ari Suryaningrum Dwi Damara Kartikasari Edo Fadila Sirat Eka Novita Shandra Eka Yuni Darmayanti Eti Setiawati Fadhlillah Ikhsan Fajar Nur Rohmat Fauzan Jaya Aziz Fajar Pradana Fanny Aulia Dewi Fattah, Rafi Indra Fatwa Ramdani, Fatwa Febri Ramadhani Fikri Hilman Fitra Abdurrachman Bachtiar Fitria, Tharessa Fitrotuzzakiyah, Shafira Puspa Gandhi Ramadhona Gembong Edhi Setiawan Gilang Ramadhan Hendra Pratama Budianto Husin Muhamad Imam Cholisoddin Imam Cholissodin Imam Cholissodin Imam Cholissodin Indah Larasati Indriati Indriati Indriati Irawati Nurmala Sari Irfan Aprison Irma Lailatul Khoiriyah Irma Nurvianti Irma Ramadanti Fitriyani Ismiarta Aknuranda Issa Arwani Issa Arwani Jobel, Roenrico Karina Widyawati Keintjem, Arthurito Khairunnisa, Alifah Kholifa'ul Khoirin Koko Pradityo Lailil Muflikhah Lathania, Laela Salma M Kevin Pahlevi M. Ali Fauzi M. Raabith Rifqi M. Rikzal Humam Al Kholili M. Tanzil Furqon Mahar Beta Adi Sucipto, Ekmaldzaki Royhan Mahendra Data Mahendra Data Marji Marji Masayu Vidya Rosyidah Maulana, M. Aziz Mayang Arinda Yudantiar Meilia, Vina Mimin Putri Raharyani Mindiasari, Irtiyah Izzaty Miracle Fachrunnisa Almas Moch. Khabibul Karim Mochamad Chandra Saputra Mohamad Alfi Fauzan Muhammad Arif Hermawan Muhammad Dimas Setiawan Sanapiah Muhammad Harish Rahmatullah Muhammad Khaerul Ardi Muhammad Rizkan Arif Muhammad Syaifuddin Zuhri Muhammad Tanzil Furqon Mustofa Robbani Muthia Azzahra Nadia Natasa Tresia Sitorus Nainggolan, Cesilia Natasya Nanda Agung Putra Nashrullah, Nashrullah Nelli Nur Rahma Ni'mah Firsta Cahya Susilo Nihru Nafi' Dzikrulloh Noval Dini Maulana Novanto Yudistira Nur Intan Savitri Bromastuty Nurfansepta, Amira Ghina Nurhana Rahmadani Nurudin Santoso Nurul Hidayat Oky Krisdiantoro Olive Khoirul L.M.A. Panjaitan, Mutiharis Dauber Pindo Bagus Adiatmaja priharsari, diah Purnomo, Welly Putra Pandu Adikara Putra, Octo Perdana Putri, Rania Aprilia Dwi Setya Rachmatika, Isnayni Sugma Radifah Radifah Rafely Chandra Rizkilillah Rahmadi, Anang Bagus Rahmat Faizal Raissa Arniantya Ramadhianti, Fatiha Randy Cahya Wihandika Ratna Candra Ika Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Rekyan Regasari MP, Rekyan Regasari Rendi Cahya Wihandika Retiana Fadma Pertiwi Sinaga Revanza, Muhammad Nugraha Delta Revinda Bertananda Reza Wahyu Wardani Rhobith, Muhammad Ridho Agung Gumelar Rima Diah Wardhani Rinda Wahyuni Rizal Setya Perdana Rizal Setya Perdana Rizki Agung Pambudi Rizky Haqmanullah Pambudi Robih Dini Rosi Afiqo Rudito Pujiarso Nugroho Rudy Usman Azzakky Ryan Mahaputra Krishnanda Sabriansyah Rizkiqa Akbar Santoso, Nurudin Satrio Hadi Wijoyo Shelly Puspa Ardina Sigit Adinugroho Silfiatul Ulumiyah Sintiya, Karena Siti Fatimah Al Uswah Siti Utami Fhylayli Sri Wahyuni Suryani Agustin Sutrisna, Naufal Putra Sutrisno Sutrisno Tahajuda Mandariansah Talitha Raissa Tibyani Tibyani Tri Afirianto Tria Melia Masdiana Safitri Ulfah Mutmainnah Vina Meilia Wayan Firdaus Mahmudy Wildannantha, Jawadi Ahmad Yerry Anggoro Yosendra Evriyantino Yuhand Pramudita, Rezzy Yuita Arum Sari Yuita Arum Sari Yulfa Hadi Wicaksono Zubaidah Al Ubaidah Sakti