Claim Missing Document
Check
Articles

Analysis of the Population of Sumatera Island Using Profile Analysis Sri Rahayu; Dony Permana; Yenni Kurniawati; Dina Fitria
UNP Journal of Statistics and Data Science Vol. 2 No. 3 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss3/185

Abstract

The distribution of the population in each province according to age groups in Sumatra Island has tended to change over time. Therefore, an analysis is needed to provide a comparative overview of the characteristics between the populations of each province with different age groups. This analysis can help to understand the variations in these characteristics in relation to the population. Profile analysis is a technique within multivariate analysis of variance that can be used to examine the differences between two or more populations, where each population is influenced by several treatments (variables) tested. This method has been applied in various fields, including government, to understand the characteristics of specific regions. This study aims to identify the characteristics of the population in each province on the island of Sumatra based on sixteen age groups. Sumatra is one of the largest islands in Indonesia, comprising ten provinces. In this research, profile analysis is utilized to compare the population profiles of each province in Sumatra based on the sixteen age groups. Based on the profile parallelism test, it was found that the profiles of the ten provinces are not parallel, indicating differences in the average population numbers or trend patterns among the provincial profiles in Sumatra based on age groups. Further testing using Tukey's HSD method was conducted to compare each pair of provinces based on specific age groups. The testing revealed that there are significant differences in several provinces in Sumatra for each age group.
Penerapan Rantai Markov pada Data Curah Hujan Harian di Kota Semarang Tsani, Nahda Maesya; Permana, Dony; Kurniawati, Yenni; Salma, Admi
UNP Journal of Statistics and Data Science Vol. 2 No. 3 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss3/189

Abstract

Rainfall is a measure of the amount of water that falls on the earth's surface in a given period of time. High rainfall can cause flooding in certain areas, while low rainfall can leave areas vulnerable to drought. Semarang City is one of the largest cities in Java Island that is often hit by floods. Efforts can be made to anticipate the risk of flooding, one of which is by studying the pattern of rainfall. This study will determine the chances of rainfall transition in Semarang City in steady state conditions using Markov chains. The results are expected to be used to anticipate the risk of flooding in Semarang City. The probability of daily rainfall transition in Semarang City in each state for the next period of time is 90.5% chance of staying in the light rain state, 7.97% chance of staying in the medium rain state and 1.50% chance of staying in the heavy rain state.
Application of Multivariate Adaptive Regression Splines for Modeling Stunting Toddler on The Island of Java Rahma, Dzakyyah; Nonong Amalita; Yenni Kurniawati; Zamahsary Martha
UNP Journal of Statistics and Data Science Vol. 2 No. 3 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss3/205

Abstract

Stunting is a chronic nutritional problem experienced by toddlers, characterized by a shorter body height compared to children their age. The aim of this research is to model and determine the factors that influence Stunting on The Island of Java using Multivariate Adaptive Regression Spline (MARS). MARS is a modeling method that can handle high-dimensional data. The results of this study show that the best MARS model is a combination (BF=24, MI=3, and MO=2) with a minimum GCV value of 0.9475. Based on the model, the factors that significantly influence Stunting on the island of Java are babies receiving complete basic immunization (X4), babies getting exclusive breastfeeding (X3), pregnant women getting K4 (X1), and pregnant women getting TTD (X2). The level of importance of each variable is 100%, 81.64%, 60.38%, and 43.90%. Based on research results, babies receiving complete basic immunization is the variable that most influences stunting on The Island of Java in 2021.
Comparison of Linear Discriminant Analysis with Robust Linear Discriminant Analysis Fitri, Fitri Hayati; Dodi Vionanda; Yenni Kurniawati; Tessy Octavia Mukhti
UNP Journal of Statistics and Data Science Vol. 2 No. 3 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss3/206

Abstract

Discriminant analysis is a multivariate method for dividing things into discrete groups and assigning new objects to existing categories. A discriminant function, which is a linear combination of independent variables used to categorize things into two or more groups or categories, is the result of discriminant analysis. The independent variables in a linear discriminant analysis must be multivariate normally distributed, and the covariance matrices for each group must be equal. In linear discriminant analysis, it is also essential to identify outliers because their existence in the data set can undermine the assumptions made by the method and lead to incorrect classification results. Therefore, in discriminant analysis, handling outliers with robust approaches is required. One such robust method in discriminant analysis is the Minimum Covariance Determinant (MCD), which is highly effective in dealing with outliers and relatively easier to apply compared to other robust methods. The aim of this study is to compare the classification results of linear discriminant analysis with robust linear discriminant analysis on the dataset of diabetes patients at RSUD Padangsidimpuan in 2023. The results obtained from this dataset indicate that linear discriminant analysis achieved an accuracy of 85,71%, while robust linear discriminant analysis achieved an accuracy of 80,95%. These findings suggest that the use of liniar discriminant analysis and robustt linear discriminant analysis can yield different results depending on the characteristics of the data and the number of outliers in the dataset.
Implementation of the Fuzzy C-Means Clustering Method in Grouping Provinces in Indonesia based on the Types of Goods Sold in E-commerce Businesses in 2022 Bimbim Oktaviandi; Tessy Octavia Mukhti; Yenni Kurniawati; Zamahsary Martha
UNP Journal of Statistics and Data Science Vol. 2 No. 3 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss3/210

Abstract

The internet facilitates e-commerce by enabling efficient transactions and building consumer trust. With internet users in Indonesia reaching 204 million in 2022, it is crucial to Cluster provinces based on the types of goods and services sold online to design effective marketing strategies. The Fuzzy C-Means (FCM) method is used for Cluster analysis, allowing objects to have different membership degrees in multiple Clusters and providing accurate Cluster center placement. This study applies Fuzzy C-Means to Cluster 34 provinces in Indonesia based on the sale of goods/services in e-commerce in 2022, aiming to provide insights into market preferences and assist companies in developing more effective strategies. The results show that the method forms two Clusters. By evaluating standard deviation values and ratios, Fuzzy C-Means proves effective in Clustering provinces in Indonesia based on e-commerce sales data. Cluster validation reveals a standard deviation ratio of 0.14, indicating clear and significant Cluster separation.
EFEKTIVITAS PEMBELAJARAN MENGGUNAKAN PERCOBAAN MAYA TERHADAP PENINGKATAN KEMAMPUAN BERPIKIR ANALITIS PESERTA DIDIK Mulyani, Suci; Kurniawati, Yenni
UNESA Journal of Chemical Education Vol. 13 No. 3 (2024)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/ujced.v13n3.p268-275

Abstract

Keterampilan dalam analisis diperlukan untuk memahami penjelasan fenomena dengan bantuan percobaan ilmiah di bidang kimia. Diperlukan pendekatan dengan tujuan memperbaiki keterampilan analisis siswa melalui eksperimen, dengan memanfaatkan media pembelajaran percobaan virtual. Penelitian ini mengarah pada penilaian efektivitas belajar menggunakan sarana simulasi digital terhadap keterampilan berpikir analitis peserta didik. Penelitian ini menerapkan metode quasi-experiment (desain kelompok kontrol yang tidak setara). Metode pengumpulan data melibatkan tes uraian, dengan data yang disertai analisis uji t dan N-gain. Analisis uji t, nilai signifikansi yang tercatat adalah 0.002, kurang dari 0.05, mengakibatkan penolakan terhadap Ho dan penerimaan Ha. Oleh karena itu, dapat disimpulkan bahwa ada perbedaan dalam kemampuan analitis antara siswa yang menggunakan media simulasi digital dan mereka yang tidak menggunakannya. Adapun pada uji N-gain, ditemukan bahwa pada kelas eksperimen, terdapat siswa dengan rata-rata nilai yang berada di kategori tinggi, sedangkan di kelas kontrol, tidak terdapat peserta didik yang termasuk dalam kategori tinggi. Dari hasil ini, dapat disimpulkan bahwa penggunaan media simulasi digital pada pembelajaran terbukti mampu secara efektif meningkatkan kapasitas analitis peserta didik. Media simulasi percobaan maya ini dapat membantu dalam proses pembelajaran, mempermudah kegiatan praktikum, dianggap menyenangkan, dan lebih mudah dipahami. Dengan demikian, media ini berpengaruh pada peningkatan kemampuan analitis peserta didik.
IDENTIFIKASI KESULITAN SISWA DALAM PELAKSANAAN PRAKTIKUM KIMIA MADRASAH ALIYAH SWASTA DI KOTA PEKANBARU Kurniawati, Yenni; Rahmawati, Santri
UNESA Journal of Chemical Education Vol. 13 No. 3 (2024)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/ujced.v13n3.p251-257

Abstract

Tujuan dari identifikasi permasalahan pada peserta didik adalah sebagai upaya untuk menemukan penyebab masalah yang dialami siswa saat melakukan praktikum. Riset ini dilaksanakan di enam sekolah Madrasah Aliyah Swasta di Kota Pekanbaru dengan menggunakan metode survei, pendekatan kualitatif, dan rancangan penelitian dengan Cross-sectional Survey Design. Populasi penelitian melibatkan sejumlah 137 siswa yang dipilih melalui metode random sampling. Instrumen yang dipakai mencakup observasi, kuesioner, serta melakukan wawancara dengan siswa dan guru guna memperkuat data yang telah dikumpulkan. Indikator penyebab kesulitan internal dalam kegiatan praktikum kimia mencakup motivasi, minat, perhatian, kesehatan, keterampilan praktis yang lemah, serta pemahaman konsep yang kurang, yang telah diuji validitas dan reliabilitasnya. Faktor eksternal yang berkontribusi terhadap kesulitan tersebut meliputi sarana dan prasarana yang tidak memadai, kualitas pengajaran guru, serta kurikulum yang kurang sesuai. Diharapkan hasil penelitian ini dapat memberikan dukungan kepada sekolah dan guru dalam mengatasi kendala yang muncul dalam proses pembelajaran kimia berbasis praktikum di Madrasah Aliyah.
Relationship Between Learning Style and Students’ Cognitive Ability In Chemistry Subjects Kurniawati, Yenni; Diva; Lina, Ejma Rukma; Nabillah, Marwana; Sari, Ceria Purnama
Arfak Chem: Chemistry Education Journal Vol. 7 No. 2 (2024): Arfak Chem
Publisher : Universitas Papua, Manokwari, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30862/accej.v7i2.803

Abstract

The diverse characteristics of chemistry materials require attention to the needs of one of them, namely the tendency of learning styles that students have, for that learning style is something that needs to be studied in relation to students' cognitive abilities. The purpose of this study was to determine the relationship between learning styles and chemistry cognitive abilities of Madrasah Aliyah Negeri Kampar students. Learning style data obtained from questionnaire scores, interviews and observations of students, the value of cognitive abilities obtained from the test results of students' chemistry cognitive abilities on atomic structure material. subject of this research is Madrasah Aliyah Negeri Kampar students, while the object of research is the relationship between learning styles with students' cognitive abilities in chemistry subjects. The sample in this study was taken from class X IPA 1 which amounted to 30 people.. Sampling in this study using purposive sampling technique. Data collection was done through observation, questionnaires, interviews, tests, documentation. The results of this study indicate that students with visual learning style tendencies are more than audio learning style tendencies followed by kinesthetic learning style tendencies and students with visual learning style tendencies on atomic structure material have better cognitive ability scores. Furthermore, the data from the observation of the relationship between learning styles and students' chemistry cognitive abilities were tested using product moment correlation. The results of data processing obtained rxy = 0.838 > rt = 0.361, this means Ha is accepted and Ho is rejected. So that there is a positive and significant correlation between the learning style variable and the variable cognitive abilities of students in chemistry subjects Madrasah Aliyah Negeri Kampar
Desain dan Uji Coba Weblog Kimia Kontekstual untuk Mendukung Literasi Sains Siswa pada Materi Larutan Elektrolit dan Non Elektrolit Kurniawati, Yenni; Riady, AD; Hendri, Jhon
Indo-MathEdu Intellectuals Journal Vol. 5 No. 6 (2024): Indo-MathEdu Intellectuals Journal
Publisher : Lembaga Intelektual Muda (LIM) Maluku

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54373/imeij.v5i6.2399

Abstract

This research aims to develop contextual chemistry weblog-based learning media on electrolyte and non-electrolyte solution material to improve students' scientific literacy. This media was designed using the Borg & Gall development model, through the stages of needs analysis, planning, development, validation, testing and revision. The validation process involves media design experts, material experts and language experts to evaluate aspects of appearance, content and language. The trial was carried out at SMA IT Al-Ittihad Pekanbaru involving one chemistry teacher and 10 class X science students. The research results show that this learning media has a very good level of validity with an average score of 89.16% from expert validation. The practicality of the media by teachers was also rated very high with a score of 92%, confirming ease of use, suitability of content to the curriculum, and clarity of language. Student responses to the media showed that 90% of students felt this media was interesting and helped understand the material, while 80% of students thought the design and interactivity of the media supported independent learning
Optimization of Sentiment Analysis for MBKM Program using Naïve Bayes with Particle Swarm Optimization Diva Aliyah; Zilrahmi; Yenni Kurniawati; Dina Fitria
UNP Journal of Statistics and Data Science Vol. 2 No. 4 (2024): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol2-iss4/220

Abstract

In early 2020, Kemendikbudristek launched the MBKM program with the aim of improving the quality of higher education through a student-focused learning approach. The launch of this program triggered various reactions on social media, especially on Twitter, both positive and negative. This study aims to analyze the sentiment of Twitter users towards the MBKM program using the Naive Bayes algorithm optimized with Particle Swarm Optimization (PSO). The data used are Indonesian tweets containing the keywords "MBKM" and "Merdeka Campus" from the period July to December 2022. The research stages include data collection through crawling, manual labeling of data into positive and negative sentiments, data preprocessing, application of the Naive Bayes algorithm, and feature selection with PSO. The results showed that the group of tweets categorized based on positive and negative sentiments towards the implementation of the MBKM program in Indonesia in 2022, showed that the NB-PSO experiment achieved an accuracy of 90.87%, an increase of 7.12% compared to the Naive Bayes algorithm alone. Thus, the use of Particle Swarm Optimization algorithm in Naive Bayes classification algorithm is proven to improve classification performance, especially in the case of sentiment analysis. Keywords: Sentiment Analysis, Merdeka Belajar Kampus Merdeka, Twitter, Naive Bayes, Particle Swarm Optimization.
Co-Authors Abdullah Herman Admi Salma Afifa Lufti Insani Ahmad, Nur Jahan AL Rezki Ivansyah Alya Aufa, Wafiq Amelia Susrifalah Anang Kurnia Anggara, Rudi Anggi Adrian Danis Anita Fadila Annisa Ramadhani Annisa Rizki Amalia Aprotama, Celsy Ardhi, Sonia Ardiyatul Putri Arnellis Arnellis arrahmi, nailul Atus Amadi Putra Aulia, Yuke Aurumnisva Faturrahmi Berliana Nofriadi Bimbim Oktaviandi Celsy Aprotama Chairina Wirdiastuti Cindy Caterine Yolanda Darwas Deska Warita Devi Yopita Sipayung Dewi Murni Dewi, Sari Tirta dhea afrila harelvi Dina Fitria Dina Fitria Dina Fitria, Dina Disti Harlin Diva Diva Aliyah Diyanti, Wafika Rahma Djamaluddin, Safrijal Dodi Vionanda Dony Permana Dwi Sulistiowati, Dwi Elfiani Sarian Bur Elfin Innaka Hamidah Elza Vinora Fachri Dermawan Fadhil Irsyad, Muhammad Fadhilah Fitri Fadzliana, Nanda Fahmi Amri, Fahmi Fashihullisan Fatimah Depi Susanty Harahap Fayyadh Ghaly Fayza Annisa Febrianti Febi Febiola Putri Fitri, Fadhilah Fitri, Fitri Hayati fitri, silfia wisa Ghaly, Fayyadh Hadiyanti Riskha Handayani, Laras Dyaz Harpidna, Riska Harpidna Hary Merdeka Helma Helma Helma Helma Hendrawan, Muhammad Hendri, Jhon Ihsan Dermawan Irwan Irwan Khairani, Putri Rahmatun Kusman Sadik Lina, Ejma Rukma Lutfian Almash M Fathoni Arnas Manja Danova Putri Marvero, Andre Maya Ifra Shobia Meira Parma Dewi Minora Longgom Nasution Muhammad Arief Rivano Muhammad Fadhil Aditya Aditya Mujakir Mujakir Mukhti, Tessy Octavia Mulyani, Suci NA Mentacem Nabillah, Marwana Natasya Dwi Ovalingga, natasyalinggaa Nonong Amalita Oktaviani, Bernadita Permana, Dony permana, yazid Prida Nova Sari Putra, Dio Afdal Putri Amalia Azzahra Putri Yeni, Dicha Putri, Fadhira Vitasha Putri, Rihani Himtari Rahma, Dzakyyah rahmad revi fadillah Rahmah, Ati Rahmawati, Santri Ramadani, Dea refelita, fitri Revina Rahmadani Riady, AD Rizkiah, Niswatul Ronald Rinaldo Rosa Salsabila Azarine Rosya, Aljeneri Safitri, Natasya S. Salma, Admi Sari, Ceria Purnama Sari, Nurhikmah Sasmita, Riza Sepniza Nasywa Septrina Kiki Arisandi Siregar, Erlina Azmi Siskha Maulana Basrul SRI RAHAYU Sri Wahyuni Suci Rahmadani Susrifalah, Amelia Syafriandi Syafriandi Syafriandi Syafriandi Tessy Octavia Mukhti Tsani, Nahda Maesya Wimmi Sartika Windi Dwi Saputra yenti, elvi Yunistika Ilanda Zamahsary Martha Zilrahmi, Zilrahmi