Claim Missing Document
Check
Articles

IMPLEMENTATION OF RESPONSE-BASED UNIT SEGMENTATION IN PARTIAL LEAST SQUARE (REBUS-PLS) FOR ANALYSIS AND REGIONAL GROUPING Al-Ham, Hairil; Satyahadewi, Neva; Preatin, Preatin
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0197-0210

Abstract

Housing environmental health is a key indicator of community quality of life. In West Kalimantan Province, variations in geographical and socioeconomic conditions contribute to disparities in housing conditions. This study analyzes and classifies regions based on factors influencing housing environmental health using the Response-Based Unit Segmentation in Partial Least Squares (REBUS-PLS) method. REBUS-PLS helps detect unobserved heterogeneity by identifying subgroups with different structural relationships. The exogenous latent variables include household economics, education, and housing facilities, while the endogenous variable is housing environmental health, measured through 15 indicators. The results of the SEM-PLS analysis obtained 3 paths that had a significant effect: household economics on housing facilities, household economics on education, and housing facilities on the health of the Housing environment. SEM-PLS assumes homogeneity across data, meaning all observations follow the same structural pattern. However, this assumption may not hold, especially with data representing diverse regions. To address potential heterogeneity, REBUS-PLS was applied. The analysis revealed two distinct segments, each with stronger explanatory power than the global model, as indicated by higher R² values (Segment 1 = 95.6%, Segment 2 = 91.4%, compared to 87.7% in the global model). Segment 1 consists of Landak, Sanggau, Sekadau, Kayong Utara, and Singkawang City. Segment 2 includes Bengkayang, Melawi, Ketapang, Kapuas Hulu, Sanggau, Sekadau, Sintang, and Pontianak City. These findings confirm the presence of structural heterogeneity and demonstrate that REBUS-PLS provides a more accurate understanding of the factors affecting housing environmental health across regions.
IDENTIFIKASI FAKTOR DAN PERAMALAN INFLASI INDONESIA MENGGUNAKAN REGRESI LINEAR BERGANDA- BACKPROPAGATION NEURAL NETWORK Febrianti, Eka; Yundari, Yundari; Satyahadewi, Neva
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 14, No 5 (2025): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v14i5.102167

Abstract

Inflasi atau laju kenaikan harga barang dan jasa yang naik turun secara ekstrem, dan tidak terkendali di Indonesia berdampak terhadap perekonomian dan menurunkan daya beli masyarakat, hingga diperlukan pengendalian. Bermacam upaya yaitu dengan identifikasi faktor yang mempengaruhi dan peramalan. Data inflasi yaitu data deret waktu berpola non-linear dan dipengaruhi oleh lebih dari satu faktor. Regresi Linear Berganda dipakai untuk melihat pengaruh bermacam variabel bebas (X) terhadap variabel terikat (Y). Backpropagation Neural Network yaitu metode peramalan yang memodelkan hubungan diantara input dan output dengan memperbarui bobot secara berulang berdasarkan nilai error atau epoch. Penelitian ini bertujuan untuk identifikasi faktor yang berpengaruh secara signifikan pada Inflasi serta meramalkan tingkat inflasi di Indonesia menggunakan metode Backpropagation Neural Network (BPNN). Proses penelitian dilakukan dengan pengumpulan data inflasi, nilai tukar, impor, harga minyak dunia, jumlah uang beredar, serta suku bunga periode Januari 2015-Desember 2024. Lalu data diolah hingga diperoleh model regresi linear berganda selanjutnya dilakukan pengujian terhadap model yang yaitu uji F, uji t, menghitung koefisien determinasi, dan uji asumsi klasik. Sesudah didapat faktor yang berpengaruh signifikan, dilakukan normalisasi, membagikan data latih-uji, pelatihan dengan algoritma Backpropagation, pengujian data target, dan peramalan dengan BPNN. Hasilnya, harga minyak dunia dan jumlah uang beredar berpengaruh signifikan pada inflasi. Arsitektur BPNN terbaik yaitu 3-6-1, dengan data 80% latih dan 20% uji, learning rate 0,7, fungsi aktivasi sigmoid, dan 1000 epoch dengan MSE 0,149030 dan MAPE 11,07%. Sesudah dilakukan peramalan pada 2025, diperoleh nilai inflasi tertinggi 2,05% pada Agustus-Desember dan inflasi terendah 1,81% pada Januari.
Co-Authors . Apriansyah Afghani Jayuska Afghany Jayuska Al-Ham, Hairil Amriani Amir Amriani Amir Amriani Amir Andani, Wirda Antoni, Frans Xavier Natalius Apriliyanti, Rita Aprizkiyandari, Siti Ardhitha, Tiffany Ari Hepi Yanti Arsyi, Fritzgerald Muhammad Arti, Reyana Hilda Ashari, Asri Mulya Asri Mulya Ashari Asty Fistia Ningrum Atikasari, Awang Aulia Puteri Amari Bambang Kurniadi Banu, Syarifah Syahr ciptadi, wahyudin Cornellia, Amanda Crismayella, Yuveinsiana Dadan Kusnandar Dadan Kusnandar Dadan Kusnandar David Jordy Dhandio Debataraja, Naomi Nessyana Della Zaria Desriani Lestari Desriani Lestari Desriani Lestari Dhandio, David Jordy Dinda Lestari Dwi Nining Indrasari Dwinanda, Maria Welita Eka Febrianti, Eka Esta Br Tarigan Evy Sulistianingsih Ewaldus Okta Ferdina Ferdina Feriliani Maria Nani Fitriawan, Della Fransisca Febrianti Sundari Fransiska Fransiska Grikus Romi Gusti Eva Tavita Gusti Eva Tavita Hairil Al-Ham Halim, Alvin Octavianus Hamzah, Erwin Rizal Handayani, Aditya Hanin, Noerul Harimurti, Puspito Harnanta, Nabila Izza Helena, Shifa Hendra Perdana Hendrianto, El Herina Marlisa Huda, Nur'ainul Miftahul Huriyah, Syifa Khansa Ibnur Rusi Ikha Safitri Imro'ah, Nurfitri IMRO’AH, NURFITRI Imtiyaz, Widad Isra’ Sagita Jawani Jawani Karlina, Sela Kusnandar, Dadan Tonny Lucky Hartanti Lucky Hartanti Lucky Hartanti M. Deny Hafizzul Muttaqin Maga, Fahmi Giovani Margareta, Tiara Margaretha, Ledy Claudia Marlisa, Herina Marola, Geby Martha, Shantika Mega Sari Juane Sofiana Mega Sari Juane Sofiana Mega Tri Junika Millennia Taraly Misrawi Misrawi Muhammad Ahyar Muhammad fauzan Muhammad Radhi Muhammad Rizki Muliadi Muliadi Muslimah (F54210032) Nabil, Ilhan Nail Nanda Shalsadilla Naomi Nessyana Debataraja Naomi Nessyana Debataraja Noerul Hanin Nona Lusia Nugrahaeni, Indah Nur Asih Kurniawati Nur Asiska Nurfadilah, Kori’ah Nurfitri Imro'ah Nurfitri Imro’ah Nurhalita Nurhalita Nurmaulia Ningsih Oktaviani, Indah Ovi Indah Afriani Paisal Paisal Pertiwi, Retno Pratama, Aditya Nugraha Preatin, Preatin Putri Putri Putri, Aulia Nabila Qalbi Aliklas R Puspito Harimurti Radhi, Muhammad Radinasari, Nur Ismi Rafdinal Rafdinal Rahadi Ramlan Rahmadanti, Putri Rahmanita Febrianti Rusmaningtyas Rahmawati, Fenti Nurdiana Ramadhan, Nanda Ramadhania, Wahida Reni Unaeni Retnani, Hani Dwi Ria Andini Ria Fuji Astuti Rina Rina Risky Oprasianti Rita Kurnia Apindiati Rivaldo, Rendi Riza Linda Rizki Nur Rahmalita Rizki, Setyo Wira Rosi Kismonika Roslina Rosi Tamara Rovi Christova Safira, Shafa Alya Salsabilla, Arla Santika Santika Sary, Rifkah Alfiyyah Seftiani, Seftiani Selvy Putri Agustianto Setyo Wir Rizki Setyo Wira Rizki Setyo Wira Rizki Setyo Wira Rizki Shantika Martha Shantika Martha Sinaga, Steven Jansen Sintia Margun Sista, Sekar Aulia Siti Aprizkiyandari Siti Aprizkiyandari, Nurul Qomariyah, Shantika Martha, Siti Hardianti Suci Angriani Sukal Minsas Sukal Minsas syuradi, Syuradi Tamtama, Ray Taraly, Inggriani Millennia Tiara, Dinda Trifaiza, Fadhela Wahyu Diyan Ramadana Wahyudin Ciptadi Warsidah Warsidah Warsidah, Warsidah Wilda Ariani Wirda Andani Yopi Saputra Yudhi Yuliono, Agus Yumna Siska Fitriyani Yundari, Yundari Yuveinsiana Crismayella Zakiah, Ainun