Articles
OTOMATISASI PERBANDINGAN PRODUK BERDASARKAN BOBOT FITUR PADA TEKS OPINI
Yufis Azhar;
Agus Zainal Arifin;
Diana Purwitasari
Jurnal Ilmu Komputer Vol 6 No 2: September 2013
Publisher : Informatics Department, Faculty of Mathematics and Natural Sciences, Udayana University
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (507.538 KB)
Proses otomatisasi perbandingan produk berdasarkan teks opini dapat dilakukan dengan caramengekstrak fitur yang dimiliki produk tersebut. Fitur-fitur inilah yang umumnya dinilai kemudian digunakanuntuk membandingkan suatu produk dengan produk yang lain. Banyak peneliti yang menggunakan kamus kataopini untuk mengekstrak fitur tersebut. Akan tetapi hal tersebut tidak efektif karena sangat bergantung padakelengkapan kamus kata yang digunakan. Oleh karena itu, dalam penelitian ini diusulkan suatu metode untukmembandingkan produk berdasarkan bobot fitur produk tanpa harus menggunakan kamus kata opini yanglengkap. Caranya adalah dengan menjumlahkan bobot dari fitur-fitur unggul yang dimiliki oleh suatu produkuntuk mendapatkan skor tiap produk. Hasil yang didapat menunjukkan bahwa penerapan metode tersebut dapatmeningkatkan akurasi dari proses perbandingan dua buah produk sebesar 81% dari pada metode sebelumnyayang hanya 71%.
Sentiment Analysis on Work from Home Policy Using Naïve Bayes Method and Particle Swarm Optimization
Rista Azizah Arilya;
Yufis Azhar;
Didih Rizki Chandranegara
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 7, No 3 (2021): December
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26555/jiteki.v7i3.22080
At the beginning of 2020, the world was shocked by the coronavirus, which spread rapidly in various countries, one of which was Indonesia. So that the government implemented the Work from Home policy to suppress the spread of Covid-19. This has resulted in many people writing their opinions on the Twitter social media platform and reaping many pros and cons of the community from all aspects. The data source used in this study came from tweets with keywords related to work from home. Several previous studies in this field have not implemented feature selection for sentiment analysis, although the method used is not optimal. So that the contribution in this study is to classify public opinion into positive and negative using sentiment analysis and implement PSO for feature selection and Naïve Bayes for classifiers in building sentiment analysis models. The results showed that the best accuracy was 81% in the classification using Naive Bayes and 86% in the classification using naive Bayes based on PSO through a comparison of 90% training data and 10% test data. With the addition of an accuracy of 5%, it can be concluded that the use of the Particle Swarm Optimization algorithm as a feature selection can help the classification process so that the results obtained are more effective than before.
SISTEM REKOMENDASI PENYEWAAN PERLENGKAPAN PESTA MENGGUNAKAN COLLABORATIVE FILTERING DAN PENGGALIAN ATURAN ASOSIASI
Gita Indah Marthasari;
Yufis Azhar;
Dwi Kurnia Puspitaningrum
Jurnal Simantec Vol 5, No 1 (2015)
Publisher : Universitas Trunojoyo Madura
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21107/simantec.v5i1.1008
ABSTRAKE-commerce berbasis web merupakan salah satu media yang efektif dalam jual beli. Banyak usaha yang telah memanfaatkan fasilitas ini. Salah satunya adalah bidang jasa persewaan alat-alat pesta. Untuk memberikan layanan yang lebih baik, e-commerce dilengkapi dengan fitur lain antara lain sistem rekomendasi. Sistem ini memudahkan konsumen menentukan barang untuk dibeli dengan cara menampilkan produk yang terkait dengan salah satu produk lain yang dibeli atau dilihat konsumen. Salah satu mekanisme untuk membangun sistem ini adalah collaborative filtering. Cara kerja collaborative filtering adalah dengan membangun sebuah basis data yang menyimpan produk-produk yang disukai konsumen. Transaksi baru yang dibuat oleh seorang konsumen akan dicocokkan dengan basis data tersebut untuk mengetahui data historis mana yang paling sesuai dengan data baru tersebut. Data historis yang paling sesuai akan ditampilkan sebagai rekomendasi bagi konsumen yang melakukan transaksi tersebut.Salah satu teknik yang dapat digunakan adalah penggalian aturan asosiasi menggunakan Algoritma Apriori. Pada penelitian ini, dibuat sebuah website persewaan alat-alat pesta dengan menerapkan sistem rekomendasi. Sistem rekomendasi dibangun menggunakan aturan-aturan yang dihasilkan oleh Algoritma Apriori. Untuk dapat menampilkan barang rekomendasi digunakan nilai support 20, sedangkan nilai confidence digunakan untuk menentukan N-teratas barang untuk direkomendasikan.Kata kunci : sistem rekomendasi, collaborative filtering, algoritma apriori. ABSTRACTWeb-based e-commerce is an effective media for buying and selling. Many businesses have taken the advantages of this facility. One of them is the party tools rental services. To provide better service, e-commerce is equipped with other features such as a recommendation mechanism. Thismechanism allows consumers specify the goods to be purchased by displaying products that are related to another purchased product or customer visits. One mechanism for establishing this system is collaborative filtering. Collaborative filtering works by building a database that stores the products which are preferred by consumers. New transactions made by a consumer will be matched with the database to find out which data are related the most. The most appropriate historical data to be displayed as a recommendation for consumers who conduct such transactions. One technique that can be used is extracting association rules using Apriori Algorithm. In this study, a website of party tools rental service is created to implement the recommendation system. A recommendation system built using rules generated by Apriori Algorithm. To be able to display items used on the value of the support 20, while the confidence value is used to determine the N-top items to be recommended.Keywords: recommender system, collaborative filtering, apriori algorithm.
Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter
Mujaddid Izzul Fikri;
Trifebi Shina Sabrila;
Yufis Azhar
SMATIKA JURNAL Vol 10 No 02 (2020): SMATIKA Jurnal : STIKI Informatika Jurnal
Publisher : LPPM STIKI MALANG
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.32664/smatika.v10i02.455
Twitter is one of the social media that is widely used by the public as a communication media and obtain information. Through this social media, users can submit various opinions or comments on an issue. The opinions and comments that users submit through the tweets they send can be used for sentiment analysis. Therefore, in this study sentiment analysis of tweets related to the University of Muhammadiyah Malang (UMM) was carried out to determine public opinion about this campus. The analysis was carried out by classifying tweets that contain people’s sentiments regarding UMM. The classification method used in this study is Naïve Bayes and Support Vector Machine (SVM) by weighting the term using TF-IDF. The result of the two methods shows that Naïve Bayes gets better accuracy than SVM with an accuracy of 73,65%
Analisis Gempa Bumi Pada Pulau Jawa Menggunakan Clustering Algoritma K-Means
Chita Nauly Harahap;
Ferin Reviantika;
Yufis Azhar
Jurnal Dinamika Informatika Vol 9 No 1 (2020): Jurnal Dinamika Informatika
Publisher : Universitas PGRI Yogyakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (664.812 KB)
Java Island is the most populated island in Indonesia with a population over 145 million. It causes mitigation of natural disaster is very important to decrease the damage. Earthquake become one of the natural disasater often happens in Java Island. The data is taken from Indonesian Agency Meteorology, Climatology and Geophysics (BMKG) twitter @infoBMKG with used #Gempa, data start from December 2018 to Maret 2020. The variabels are used is four namely Date, Latitude, Longitude, and Magnitude. Earthquake clustering based on location of earthquake used K-Means algorithm with using DBSCAN algorithm as comparison. The results are visualized using maps and outcome score of index sillhoute are indicate using K-Means more better.
Re-Ranking Image Retrieval on Multi Texton Co-Occurrence Descriptor Using K-Nearest Neighbor
Yufis Azhar;
Agus Eko Minarno;
Yuda Munarko
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018
Publisher : IAES Indonesia Section
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (419.448 KB)
|
DOI: 10.11591/eecsi.v5.1683
Some features commonly used to conduct image retrieval are color, texture and edge. Multi Texton Co-Occurrence Descriptor (MTCD) is a method which uses all three features to perform image retrieval. This method has a high precision when doing retrieval on a patterned image such as Batik images. However, for images focusing on object detection like corel images, its precision decreases. This study proposes the use of KNN method to improve the precision of MTCD method by re-ranking the retrieval results from MTCD. The results show that the method is able to increase the precision by 0.8% for Batik images and 9% for corel images.
Prediksi Harga Minyak Dunia Dengan Metode Deep Learning
Muhammad Hussein;
Yufis Azhar
Fountain of Informatics Journal Vol 6, No 1 (2021): Mei
Publisher : Universitas Darussalam Gontor
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21111/fij.v6i1.4446
AbstrakPeramalan seri waktu mendapatkan banyak perhatian dari berbagai penelitian. Salah satu data seri waktu yang barubah setiap periode tertentu adalah minyak bumi. Secara umum harga minyak bumi dipengarui oleh dua hal yaitu permintaan dan pendapatan. Pada penelitian ini menggunakan state-of-the-art model Deep Learning LSTM (Long Short Term Memory) untuk meramalkan harga minyak dalam periode tertentu. Metode ini digunakan karena arsitekturnya dapat beradaptasi dengan belajar non-linear dari data seri waktu yang kompleks. Dataset yang digunakan adalah data Brent Oil Price yang selalu di update setiap minggu. Dataset ini berisi harga minyak brent dari tahun 1987 sampai sekarang. Beberapa model yang dibangun terbukti dapat meramalkan harga minyak dengan baik. Model terbaik yang didapatkan dari penelitian ini memiliki RMSE 0,0186 dan MAE 0,013.Kata kunci: LSTM, deep learning, peramalan, harga minyak Abstract[Forecasting World Oil Price with Deep Learning Method] Time series forecasting gets a lot of attention from various studies. One of the time-series data that changes every certain period is petroleum. In general, the price of petroleum is affected by two things, namely demand and income. This research uses a state-of-the-art Deep Learning LSTM (Long Short-Term Memory) model to predict the oil price in a certain period. This method is used because the architecture can adapt to non-linear learning from complex time series data. The dataset used is the Brent Oil Price data, which is always updated every week. This dataset contains the price of Brent oil from 1987 to the present. The models that were built proved to be able to predict oil prices well. The best models obtained from this study have RMSE 0.0186 and MAE 0.013.Keywords: LSTM, deep learning, forecasting, oil price
Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine
Widya Rizka Ulul Fadilah;
Dewi Agfiannisa;
Yufis Azhar
Fountain of Informatics Journal Vol 5, No 2 (2020): November
Publisher : Universitas Darussalam Gontor
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.21111/fij.v5i2.4449
AbstrakSaham merupakan salah satu bentuk investasi yang mana merupakan surat berharga yang menjadi bukti kepemilikan seseorang atas suatu perusahaan. Pergerakan saham dari waktu ke waktu relatif tidak menentu dan tidak pasti, namun masih dapat diprediksi. Prediksi harga saham ini akan sangat berguna bagi investor untuk mengetahui bagaimana alur investasi bekerja pada setiap harga pada masing-masing harga saham yang berubah dari waktu ke waktu. Model prediksi pergerakan harga saham yang akurat dapat membantu para investor dalam pertimbangan pengambilan keputusan transaksi saham karena pergerakan harga saham yang cenderung non linier ini akan menyulitkan investor dalam melakukan prediksi. Dalam penelitian ini dilakukan prediksi harga saham PT. Telekomunikasi Indonesia menggunakan metode algoritma Support Vector Machine yang ditingkatkan kinerjanya menggunakan kernel RBF. Dari hasil pengujian dengan metode Support Vector Machine dihasilkan tingkat akurasi sebesar 0.9641 dan RMSE sebesar 0.0932. Pengujian juga dilakukan menggunakan algoritma k-Nearest Neighbors dengan tingkat akurasi sebesar 0.945 dan RMSE sebesar 0.1162. Dengan itu diketahui bahwa algoritma SVM memiliki tingkat akurasi yang lebih tinggi dan tingkat error yang lebih rendah dibangdingkan metode KNN.Kata kunci: prediksi, harga saham, support vector machine. Abstract[Stock Price Prediction Analysis of PT. Indonesian Telecommunications Using Methods Support Vector Machine] Stock is a form of investment which is a form of securities which is a proof of someone's ownership of a company. The movement of shares from time to time is relatively uncertain, but still predictable. This stock price prediction will be very useful for investors to find out how the flow of investment works at each price on each stock price that changes from time to time. An accurate prediction model of stock price movements can help investors in considering the decision of stock transaction because the stock price movements that tend to be non-linear will make it difficult for investors to make predictions. In this research a prediction of the stock price of PT. Telekomunikasi Indonesia uses the Support Vector Machine algorithm method which is improved in performance using the RBF kernel. From the results of testing with the Support Vector Machine method the accuracy level is 0.9641 and the RMSE is 0.0932. Tests are also carried out using the k-Nearest Neighbors algorithm with an accuracy level of 0.945 and an RMSE of 0.1162. Therefore, it is known that the SVM algorithm has a higher level of accuracy and a lower error rate than the KNN method.Keywords: prediction, stock price, support vector machine.
Prediksi pembatalan pemesanan hotel menggunakan optimalisasi hiperparameter pada algoritme Random Forest
Yufis Azhar;
Galang Aji Mahesa;
Moch. Chamdani Mustaqim
Jurnal Teknologi dan Sistem Komputer Volume 9, Issue 1, Year 2021 (January 2021)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.14710/jtsiskom.2020.13790
Cancellation of hotel bookings by customers greatly influences hotel managerial decision making. To minimize losses by this problem, the hotel management made a fairly rigid policy that could damage the reputation and business performance. Therefore, this study focuses on solving these problems using machine learning algorithms. To get the best model performance, hyperparameter optimization is applied to the random forest algorithm. It aims to obtain the best combination of model parameters in predicting hotel booking cancellations. The proposed model is proven to have the best performance with the highest accuracy results of 87 %. This study's results can be used as a model component in hotel managerial decision-making systems related to future bookings' cancellation.
ANALISIS PENGARUH PERTUMBUHAN EKONOMI TERHADAP KEMISKINAN TINGKAT PROVINSI DI INDONESIA
Fenny Linsisca Putri;
Oktavia Dwi Megawati;
Yufis Azhar
METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Vol. 4 No. 2 (2020): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi
Publisher : Universitas Methodist Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (353.479 KB)
|
DOI: 10.46880/jmika.Vol4No2.pp144-148
This study aims to determine what causes or impacts economic growth in poverty in Indonesia from 2013 to 2018. Economic growth and poverty are very important in seeing the success of a country's development. However, developing countries that are experiencing economic growth such as Indonesia are also accompanied by an increase in the growth of the population living under poverty. Therefore, poverty is also one of the problems in the economy in Indonesia which is complex and multidimensional. In this study, to see how much influence economic growth has on the number of poor people, a simple linear regression is used. The conclusion obtained from this process is that variable X (economic growth) has an influence on variable Y (number of poor people in Indonesia), especially at the provincial level. Simultaneously, economic growth has an influence on the poverty rate in Indonesia by 3,485, while the coefficient is 1,359.