p-Index From 2021 - 2026
8.993
P-Index
This Author published in this journals
All Journal Jurnal Dedikasi Jurnal Ilmu Komputer Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Simantec Jurnal sistem informasi, Teknologi informasi dan komputer Jurnal Teknologi Informasi dan Ilmu Komputer SMATIKA Proceeding of the Electrical Engineering Computer Science and Informatics Fountain of Informatics Journal Sistemasi: Jurnal Sistem Informasi Jurnal Teknologi dan Sistem Komputer JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Informatika Jurnal Pilar Nusa Mandiri Network Engineering Research Operation [NERO] Jurnal Komputer Terapan Syntax Literate: Jurnal Ilmiah Indonesia Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control SINTECH (Science and Information Technology) Journal METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) JURTEKSI EDUMATIC: Jurnal Pendidikan Informatika Jurnal Informatika Kaputama (JIK) JISKa (Jurnal Informatika Sunan Kalijaga) Journal of Electronics, Electromedical Engineering, and Medical Informatics Jurnal Repositor Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Teknik Informatika (JUTIF) Jurnal Perempuan & Anak Jurnal Dinamika Informatika (JDI) Makara Journal of Technology Jurnal Sistem Informasi Jurnal Informatika: Jurnal Pengembangan IT
Claim Missing Document
Check
Articles

Pelabelan Klaster Fitur Secara Otomatis pada Perbandingan Review Produk Rozi, Fahrur; Wijoyo, Satrio Hadi; Isanta, Septiyan Andika; Azhar, Yufis; Purwitasari, Diana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 1 No 2: Oktober 2014
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (711.042 KB) | DOI: 10.25126/jtiik.201412112

Abstract

Abstrak Penggunaan review produk sebagai suatu sumber untuk mendapatkan informasi dapat dimanfaatkan untuk mengoptimalkan pemasaran suatu produk. Situs belanja online merupakan salah satu sumber yang dapat digunakan untuk pengambilan review produk. Analisa terhadap produk dapat dilakukan dengan membandingkan antara dua buah produk berbeda berdasarkan fitur produk tersebut. Fitur dari suatu produk didapatkan melalui ekstraksi fitur dengan metode double propagation. Fitur yang terdapat dalam sebuah review sangat banyak serta terdapat beberapa kata yang memiliki arti yang sama yang mewakili suatu fitur tertentu, sehingga diperlukan suatu pengelompokan terhadap fitur tersebut. Pengelompokan suatu fitur produk dapat dilakukan secara otomatis tanpa memperhatikan kamus kata, yaitu dengan menggunakan teknik clustering. Hierarchical clustering merupakan salah satu metode yang dapat digunakan untuk pengelompokan terhadap fitur produk. Pengujian dengan metode hierarchical clustering untuk pengelompokan fitur menunjukkan bahwa metode average linkage memiliki nilai recall dan f-measure yang paling tinggi. Sementara untuk pengujian pelabelan menunjukkan bahwa semantic similarity antar fitur lebih berpengaruh dari pada kemunculan fitur di dokumen. Kata kunci: clustering, fitur produk, pelabelan Abstract Product review can be used as a source for acquire information and to optimize the marketing of product. Online shopping sites are one of source that can be used to get product reviews. Analysis of the product can be done by comparing two different products based on product’s features. Features of a product can be obtained through extraction of features with double propagation method. In the product review there are many feature that can be found, and there are some words that have the same meaning which represents a particular feature, so we need a grouping on the feature. Hierarchical clustering is one method that can be used for grouping the features of the product. Based on testing, hierarchical clustering method for grouping feature indicate that the average linkage method has the highest recall and f-measure. As for testing in labeling indicates that the semantic similarity between features is more influential than the appearance of features in the document. Keywords: clustering, features of the product, labeling
Convolutional Neural Network for COVID-19 Detection Using InceptionV3 Transfer Learning Pratama, Dhimas Rama Anthony Navy; Azhar, Yufis
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4094

Abstract

The COVID-19 pandemic has underscored the need for rapid and accurate diagnostic methods. Although Reverse Transcription Polymerase Chain Reaction (RT-PCR) is the gold standard for detecting COVID-19, it presents limitations such as high costs, lengthy processing times, and the requirement for specialized personnel. Medical imaging, particularly lung X-rays, offers a viable alternative for COVID-19 detection. This study evaluates five Convolutional Neural Network (CNN) models: a handcrafted CNN, VGG-16, VGG-19, ResNet50, and InceptionV3, with the aim of enhancing classification accuracy between COVID-19 and normal lung images. The dataset, obtained from Kaggle, comprises 13,808 X-ray images, which were balanced using random oversampling to address class imbalance. Data augmentation techniques were applied to improve model generalization and mitigate overfitting. After training the models for 100 epochs, the results revealed that both VGG-19 and InceptionV3 achieved the highest accuracy, each attaining 100%, outperforming the other models. VGG-16 and CNN Handcraft also demonstrated strong performance with an accuracy of 99% and 97%, whereas ResNet50 exhibited the lowest accuracy at 78%. These findings suggest that more complex CNN architectures, such as VGG- 19 and InceptionV3, are highly effective in detecting COVID-19 from X-ray images. Future research should explore additional CNN models and employ further model tuning to optimize performance.
Identifikasi Penyakit Tanaman Pisang Melalui Citra Daun Pisang Menggunakan Metode CNN Dengan Model ResNet50 dan VGG-19 Ilham Rahmana Syihad; Muhammad Rizal; Zamah Sari; Yufis Azhar
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 6 (2023): December 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i6.5000

Abstract

Identify banana plant diseases using machine learning with the CNN method to make it easier to identify diseases in banana plants through leaf images. It employs the CNN method, incorporating ResNet50 because ResNet50 is one of the best models and a suitable model for the data set used, and the VGG-19 model is used because VGG-19 was one of the winning models of the 2014 ImageNet Challenge and is a model that also fits the data set used. The research objectives encompass data set processing, model architecture development, evaluation, and result reporting, all aimed at improving disease identification in banana plants. The ResNet50 model achieved impressive 94% accuracy, with 88% precision, 91% recall, and an F1 score of 89%, while the VGG-19 model demonstrated strong performance with 91% accuracy, surpassing previous research and highlighting the effectiveness of these models in identifying banana plant diseases through leaf images. In conclusion, the exceptional accuracy positions it as the preferred model for CNN-based disease identification in banana plants, offering significant advances and insights for agricultural practices. Future research opportunities include exploring alternative CNN models, architectural variations, and more extensive training datasets to improve disease identification accuracy.
Market Basket Analysis using the Frequent Pattern Growth Algorithm at RJ Mart Melaris arrafiq, ubay hakim; Azhar, Yufis; Wicaksono, Galih Wasis
Sistemasi: Jurnal Sistem Informasi Vol 13, No 4 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i4.3634

Abstract

Marketing strategy in a business is a major factor in the success or failure of a business both micro, medium and macro. With an effective and efficient marketing strategy It is hoped that it can increase income to the maximum. Currently, technological developments are very fast, including carrying out transactions that are directly connected to the database, resulting in very large data growth. The data itself can be used as a source of information to determine the right marketing strategy. The main aim of this research is to maximize the existing marketing strategy at RJ Mart Melaris by utilizing data as a source of information and consideration. The choice of Market Basket Analysis as a method for utilizing data is because these medium-sized businesses need consideration to develop sales by forming effective product packages. Frequent Pattern Growth is used as an effective algorithm to form combinations of product items or what is usually called an association rule. Some of the benefits resulting from this research are knowing how likely a product is to be purchased at the same time as other products, what products are sold the most and the least so that you can maximize stock of goods, and the relationship between products to maximize the placement of goods. This research produced 8 Association Rules or product combinations with 6 different items. The strongest rule that is generated is that if you buy special fried Indomie and chicken curry Indomie, you will definitely also buy special chicken Indomie with an association strength of 8,472. Meanwhile, the item that is most often purchased together with other items is the special fried Indomie, which sells 50% together with the special chicken curry Indomie and special chicken Indomie. Apart from that, this research also produced 2 different groups of items, each item in the group has a sales relationship.
DETECTION OF LEAF SPOT DISEASE IN OIL PALM SEEDLINGS USING CONVOLUTIONAL NEURAL NETWORK METHOD Azhar, Yufis; Zulva, Muhammad Shalahuddin
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 10 No. 2 (2024): Maret 2024
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v10i2.2903

Abstract

Abstract: This research aims to develop a method for detecting leaf spot disease in oil palm seedlings using Convolutional Neural Network (CNN). Leaf spot disease in oil palm seedlings can hinder growth and production. CNN has proven effective in image processing and classification, particularly in plant disease detection. In this study, we utilized a dataset of images containing oil palm seedling leaves infected with leaf spot disease and healthy leaves. We performed data processing, built a CNN model, and conducted hyperparameter tuning. The test results demonstrate that the developed CNN model achieves high accuracy in recognizing and distinguishing between oil palm seedling leaves infected with leaf spot disease and healthy ones. This research contributes to the development of plant disease detection technology that can support economic growth in the oil palm plantation sector. Keywords: Convolutional Neural Network, image processing, leaf spot disease detection, oil palm seedlings. Abstrak: Penelitian ini bertujuan untuk mengembangkan metode deteksi penyakit bercak pada bibit kelapa sawit menggunakan Convolutional Neural Network (CNN). Bibit kelapa sawit yang terinfeksi penyakit bercak dapat menghambat pertumbuhan dan produksi kelapa sawit. Metode CNN telah terbukti efektif dalam pengolahan citra dan klasifikasi, khususnya dalam deteksi penyakit pada tanaman. Dalam penelitian ini, kami menggunakan dataset citra daun bibit kelapa sawit yang terinfeksi penyakit bercak dan yang normal. Kami melakukan processing data, membangun model CNN, dan melakukan tuning hyperparameter. Hasil pengujian menunjukkan bahwa model CNN yang dikembangkan memiliki akurasi yang tinggi dalam mengenali dan membedakan citra daun bibit kelapa sawit yang terinfeksi penyakit bercak dan yang normal. Penelitian ini memberikan kontribusi dalam pengembangan teknologi deteksi penyakit tanaman yang dapat mendukung pertumbuhan ekonomi di sektor perkebunan kelapa sawit. Kata kunci: bibit kelapa sawit, Convolutional Neural Network, deteksi penyakit bercak,  pengolahan citra.
Deteksi Penyakit Malaria Menggunakan Klasifikasi Berbasis CNN Yusuf, Achmad; Azhar, Yufis; Sari, Zamah
Syntax Literate Jurnal Ilmiah Indonesia
Publisher : Syntax Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36418/syntax-literate.v9i1.14771

Abstract

Malaria merupakan penyakit yang serius dan berpotensi fatal yang disebabkan oleh parasit protozoa. Penyakit ini umumnya ditularkan oleh nyamuk dan tersebar luas di berbagai wilayah tropis dan subtropis, salah satu metode deteksi malaria berbasis citra digital yang banyak digunakan adalah deteksi malaria berbasis convolutional neural network (CNN). Tujuan penelitian ini adalah untuk mendeteksi penyakit malaria menggunakan klasifikasi berbasis CNN. Penelitian ini menggunakan metode penelitian systematic literature review. Data dikumpulkan melalui pencarian sistematis dalam database akademik dan perpustakaan digital yang relevan seperti Google Schoolar dengan kata kunci penyakit malaria & CNN. Data yang telah terkumpul kemudian dianalisis mencakup perbandingan, kategorisasi, dan penyajian temuan-temuan yang relevan dari studi-studi yang ada sehingga diperoleh 8 penelitian yang digunakan dalam penelitian ini. Hasil systematic literature review adalah menemukan bahwa diagnosis penyakit malaria berbasis CNN efektif dan dapat diandalkan untuk mendeteksi penyakit malaria dengan persentase lebih dari 90%.
PENINGKATAN KEMAMPUAN PENGOLAHAN DATA DENGAN PEMANFAAATAN APLIKASI BERBASIS KECERDASAN BUATAN BAGI PENELITI BAPPEDA KABUPATEN SIDOARJO Azhar, Yufis; Sari, Zamah; Kholimi, Ali Sofyan
Community Development Journal : Jurnal Pengabdian Masyarakat Vol. 5 No. 1 (2024): Volume 5 No 1 Tahun 2024
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cdj.v5i1.22719

Abstract

Kegiatan pengabdian ini bertujuan untuk meningkatkan kemampuan pengolahan data dengan menggunakan aplikasi berbasis Artificial Intelligence (AI), atau kecerdasan buatan, bagi para peneliti di BAPPEDA Kabupaten Sidoarjo. Kegiatan ini dilakukan dengan metode pelatihan hybrid, yaitu kombinasi antara pelatihan luring dan daring. Pelatihan ini meliputi pengenalan konsep dan prinsip dasar pengolahan dan analisis data, penggunaan software analisis data seperti Microsoft Excel, Aplikasi berbasis AI dalam penggalian informasi tersembunyi dalam dataset, dan metode dan teknik analisis data yang lebih canggih. Hasil evaluasi menunjukkan bahwa kegiatan pengabdian ini berhasil meningkatkan pengetahuan, keterampilan, perilaku, dan hasil peserta dalam pengolahan data dengan menggunakan aplikasi berbasis AI. Kegiatan pengabdian ini juga memberikan dampak positif terhadap kinerja individu, organisasi, dan pembangunan daerah.
Automatic Summarization of Court Decision Documents over Narcotic Cases Using BERT Wicaksono, Galih Wasis; Al asqalani, Sheila Fitria; Azhar, Yufis; Hidayah, Nur Putri; Andreawana, Andreawana
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1811

Abstract

Reviewing court decision documents for references in handling similar cases can be time-consuming. From this perspective, we need a system that can allow the summarization of court decision documents to enable adequate information extraction. This study used 50 court decision documents taken from the official website of the Supreme Court of the Republic of Indonesia, with the cases raised being Narcotics and Psychotropics. The court decision document dataset was divided into two types, court decision documents with the identity of the defendant and court decision documents without the defendant's identity. We used BERT specific to the IndoBERT model to summarize the court decision documents. This study uses four types of IndoBert models: IndoBERT-Base-Phase 1, IndoBERT-Lite-Bas-Phase 1, IndoBERT-Large-Phase 1, and IndoBERT-Lite-Large-Phase 1. This study also uses three types of ratios and ROUGE-N in summarizing court decision documents consisting of ratios of 20%, 30%, and 40% ratios, as well as ROUGE1, ROUGE2, and ROUGE3. The results have found that IndoBERT pre-trained model had a better performance in summarizing court decision documents with or without the defendant's identity with a 40% summarizing ratio. The highest ROUGE score produced by IndoBERT was found in the INDOBERT-LITE-BASE PHASE 1 model with a ROUGE value of 1.00 for documents with the defendant's identity and 0.970 for documents without the defendant's identity at a ratio of 40% in R-1. For future research, it is expected to be able to use other types of Bert models such as IndoBERT Phase-2, LegalBert, etc.
Classification of Malaria Cell Image using Inception-V3 Architecture Minarno, Agus Eko; Aripa, Laofin; Azhar, Yufis; Munarko, Yuda
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1301

Abstract

Malaria is a severe global public health problem caused by the bite of infected mosquitoes. It can be cured, but only with early detection and effective, quick treatment. It can cause severe conditions if not properly diagnosed and treated at an early stage. In the worst scenario, it can cause death. This study aims at focusing on classifying malaria cell images. Malaria is classified as a dangerous disease caused by the bite of the female Anophles mosquito. As such, it leads to mortality when immediate action and treatment fails to be administered. In particular, this study aims to classify malaria cell images by utilizing the Inception-V3 architecture. In this study, training was conducted on 27,558 malaria cell image data through Inception-V3 architecture by proposing 3 scenarios. The proposed scenario 1 model applies the SGD optimizer to generate a loss value of 0.13 and an accuracy value of 0.95; scenario 2 model applies the Adam optimizer to generate a loss value of 0.09 and an accuracy value of 0.96; and lastly scenario 3 implements the RMSprop optimizer to generate a loss value of 0.08 and an accuracy value of 0.97. Applying the three scenarios, the results of the study apparently indicate that the Inception-V3 model using the RMSprop optimizer is capable of providing the best accuracy results with an accuracy of 97% with the lowest loss value, compared to scenario 1 and scenario 2. Further, the test results confirms that the proposed model in this study is capable of classifying malaria cells effectively.
Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor Minarno, Agus Eko; Hasanuddin, Muhammad Yusril; Azhar, Yufis
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1299

Abstract

Batik is an Indonesian cultural heritage that should be preserved. Over time, many batik motifs have sprung up, which can lead to mutual claims between craftsmen. Therefore, it is necessary to create a system to measure the similarity of a batik motif. This research is focused on making Content-Based Image Retrieval (CBIR) on batik images. The dataset used in this research is big data Batik images. The authors used transfer learning on several pre-trained models and used Convolutional Neural Network (CNN) Autoencoder from previous studies to extract features on all images in the database. The extracted features calculate the Euclidean distance between the query and all images in the database to retrieve images. The image closest to the query will be retrieved according to the number of r, namely 3, 5, 10, or 15. Before the image is retrieved, the retrieval system is used to re-ranked with K-Nearest Neighbor (KNN), which classifies the retrieved image. The results of this study prove that MobileNetV2 + KNN is the best model in terms of Image Retrieval Batik, followed by InceptionV3 and VGG19 as the second and third ranks. Moreover, CNN Autoencoder from previous research and InceptionResNetV2 are ranked fourth and fifth. In this study, it was also found that the use of KNN re-ranking can increase the precision value by 0.00272. For further research, deploying these models, especially for MobileNetV2 is an approach for seeing a major impact on batik craftsmanship for decreasing batik motif plagiarism.
Co-Authors A.A. Ketut Agung Cahyawan W Achmad Fauzi Saksenata Adhigana Priyatama Aditya Dwi Maryanto Adnan Burhan Hidayat Kiat Afdian, Riz Agus Eko Minarno Agus Zainal Arifin Ahmad Annas Al Hakim Ahmad Darman Huri Ahmad Hanif Nurfauzi Ahmadu Kajukaro Akbi, Denar Regata Akmal Muhammad Naim Al asqalani, Sheila Fitria Al-rizki, Muhammad Andi Alfin Yusriansyah Ali Sofyan Kholimi Amelia, Putri Juli Ananda Ayu Dianti Andhika Ade Verdiyanto Andhika Pranadipa Andi Shafira Dyah Kurniasari Andreawana, Andreawana Andriani Eka Pramudita Annisa Annisa Annisa Fitria Nurjannah Aria Maulana Aripa, Laofin Aris Muhandisin arrafiq, ubay hakim Arya, Tri Fidrian Audi Bayu Yuliawan Aulia Ligar Salma Hanani Bagas Aji Aprian Basuki, Setio Bayu Yuliawan, Audi Bintang, Rahina Chandranegara, Didih Rizki Chita Nauly Harahap Christian Sri Kusuma Aditya Christian Sri kusuma Aditya, Christian Sri kusuma Cokro Mandiri, Mochammad Hazmi Denny Risky Delis Putra Dewi Agfiannisa Diana Purwitasari Doni Yulianto Dwi Anggraini Puspita Rahayu Dwi Kurnia Puspitaningrum DWI RAHMAWATI Dyah Anitia Dyah Ayu Irianti Eko Budi Cahyono Elsyah Ayuningrum Elza Norazizah Evi Febrion Rahayuningtyas Fahrur Rozi Faizun Nuril Hikmah Faldo Fajri Afrinanto Fatimah Defina Setiti Alhamdani Fenny Linsisca Putri Feny Novia Rahayu Feranandah Firdausi Ferin Reviantika Ferin Reviantika Fikri, Ulul Fiqri Azmi Fachir Firdausi, Feranandah Firdausita, Nuris Sabila Firdausy, Aidia Khoiriyah Firdhansyah Abubekar Fitri Bimantoro Galang Aji Mahesa Galang Aji Mahesa Gita Indah Marthasari Hanung Adi Nugroho Haqim, Gilang Nuril Hardianto Wibowo Haris Diyaul Fata Harmanto, Dani Hasanuddin, Muhammad Yusril Hermansyah Adi Saputra Hiu Adam Abdullah Hussin Agung Wijaya Ibrahim, Zaidah Ilham Rahmana Syihad Imam Halimi Irfan, Muhammad Ivan Dwi Nugraha Jahtra Hidayatullah Jalu Nusantoro Khoirir Rosikin Kiki Ratna Sari Lina Dwi Yulianti Linggar Bagas Saputro Lusianti, Aaliyah M Syawaluddin Putra Jaya M. Randy Anugerah Mahar Faiqurahman Maskur Maskur Maskur Maskur Masluha, Ida Maulina Balqis Meilina Agustina Mentari Mas'ama Safitri Moch Shandy Tsalasa Putra Moch. Chamdani Mustaqim Mochammad Hazmi Cokro Mandiri Moh. Badris Sholeh Rahmatullah Muhammad Aji Purnama Wibowo Muhammad Al Reza Fahlopy Muhammad Andi Al-Rizki Muhammad Athaillah Muhammad Bima Al Fayyadl Muhammad Fadliansyah Muhammad Hussein Muhammad Misbahul Azis Muhammad Nuchfi Fadlurrahman Muhammad Riadi Muhammad Rifal Alfarizy Muhammad Rivaldi Asyhari Muhammad Rizki Muhammad Rizky Iman Permana Muhammad Shalahuddin Zulva Mujaddid Izzul Fikri Nabillah Annisa Rahmayanti Nina Mauliana Noor Fajriah Novandha Yudyanto Noviani Sintia Duwi Trisna Nur Hayatin Nur Putri Hidayah Nuryasin, Ilyas Oktavia Dwi Megawati Otto Endarto Prakoso, Rahmat Pratama, Dhimas Rama Anthony Navy Putri, Ira Ekanda Rahma Ningsih Rangga Kurnia Putra Wiratama Ratna Sari Rifky Ahmad Saputra Riksa Adenia Riska Septiana Putri Rista Azizah Arilya Riz Afdian Rizal Arya Suseno Rizal Rakhman Mustafa S, Vinna Rahmayanti Saputri, Indah Sari Wahyunita Sari, Veronica Retno Sari, Zamah Satrio Hadi Wijoyo Septiyan Andika Isanta Setiono, Fauzan Adrivano Shintya Larasabi , Auliya Tara Silcillya Ayu Astiti Siti Maghfiroh Sucia, Dara Suryani Rachmawati Suseno, Jody Ririt Krido Susi Ekawati Syaifuddin Syaifuddin Syaifudin Zuhri Taufik Nurahman Tri Fidrian Arya Trifebi Shina Sabrila Trifebi Shina Sabrila Ujilast, Novia Adelia Ulfah Nur Oktaviana Veronica Retno Sari Vinna Utami Putri Wahyu Priyo Wicaksono Wana Salam Labibah Wicaksono, Galih Wasis Widya Rizka Ulul Fadilah Wildan Suharso Wildan Suharso Wildan Suharso Yesicha Amilia Putri Yuda Munarko Yudhono Witanto Yurizal Rizqon Rifani Yusuf, Achmad Zamah Sari Zulva, Muhammad Shalahuddin