Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Teknika

Sistem Deteksi Penyakit Covid-19 Berdasarkan Gejala Awal Menggunakan Algoritma Naive Bayes Berbasis Android Dede Kurniadi; Asri Mulyani; Diar Nur Rizky
Teknika Vol 12 No 3 (2023): November 2023
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v12i3.678

Abstract

Data penelitian terakhir menunjukkan bahwa masyarakat merasa takut untuk melakukan pemeriksaan ke instansi kesehatan akibat kurangnya pengetahuan Covid-19, sehingga menyebabkan ketidak pedulian dalam aktivitas sehari-hari terhadap dampak dari situasi penyakit Covid-19. Oleh karena itu dibutuhkan sebuah aplikasi sistem deteksi gejala awal penyakit Covid-19 berbasis mobile. Tujuan dari penelitian ini membuat aplikasi sistem deteksi penyakit Covid-19 dengan menerapkan metode pengklasifikasian Naive Bayes sehingga mempermudah pengguna dalam melakukan tes mandiri gejala awal Covid-19. Metode perancangan yang digunakan adalah Extreme Programming (XP) yang terdiri dari planning, analysis, design, implementation, dan maintenance. Data yang digunakan terdiri dari 2 dataset yaitu dataset untuk pengklasifikasian penyakit Covid-19 dengan jumlah data sebanyak 44.453 dan dataset untuk pengklasifikasian varian Covid-19 berjumlah 128.769. Penelitian ini melakukan 2 kali pemodelan menggunakan Split Data dengan perbandingan 5:5 untuk klasifikasi penyakit Covid-19 dan perbandingan 3:7 untuk klasifikasi varian Covid-19. Hasil penelitian ini berhasil membangun Sistem deteksi penyakit Covid-19 berdasarkan gejala awal menggunakan algoritma Naive Bayes berbasis android dan telah mampu memprediksi penyakit Covid-19 ke dalam 4 class dengan nilai F1-Score yaitu Allergy 0,98, Cold 0,61, Covid 0,56, dan Flu 0,95, serta gejala yang paling berpengaruh pada class Allergy yaitu CS13 (Loss of taste) dengan nilai 0,50, class Cold yaitu CS3 (Tiredness) dengan nilai 0,52, class Covid yaitu CS12 (Difficulty breathing) dengan nilai 0,51, dan class Flu yaitu CS19 (Sneezing) dengan nilai 0,53, sistem yang dibangun juga mampu memprediksi varian Covid-19 ke dalam 3 class dengan nilai F1-Score yaitu alpha 0,85, delta 0,78, dan omicron 0,93, serta gejala yang paling berpengaruh pada class Alpha yaitu VS3 (Loss of appetite) dengan nilai 0,74, class Delta yaitu VS12 (Cough) dengan nilai 0,87, dan class Omicron yaitu VS10 (Sore throat) dengan nilai 0,67, juga aplikasi berhasil dan dapat dirancang dengan pendekatan Extreme Programming (XP).
Penerapan Metode Certainty Factor pada Sistem Pakar Diagnosis Penyakit Difteri Berbasis Web Asri Mulyani; Dede Kurniadi; Sri Intan Multajam
Teknika Vol 12 No 3 (2023): November 2023
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v12i3.686

Abstract

Difteri adalah penyakit menular dan mematikan, penyakit ini dilaporkan oleh Dinas Kesehatan Jawa Barat kembali merebak akibat penanganan yang lambat. Jauhnya fasilitas layanan kesehatan dan keterbatasan jumlah dokter menjadi permasalahan. Tujuan dari penelitian ini adalah merancang dan membangun sistem pakar yang mampu melakukan diagnosis awal penyakit difteri melalui penerapan metode certainty factor. Aplikasi ini dirancang dalam bentuk web dengan mengikuti proses pengembangan aplikasi ESDLC (Expert System Development Life Cycle). Hasil dari penelitian ini adalah sebuah aplikasi sistem pakar berbasis web untuk mendiagnosis penyakit difteri dengan basis pengetahuan terdiri dari 12 gejala penyakit. Sistem pakar diagnosis penyakit difteri ini telah melalui proses uji coba menggunakan metode blackbox testing, hasilnya menunjukkan semua fitur dalam aplikasi yang sudah dibuat dapat beroperasi dengan baik. Selain itu, tingkat akurasi dari sistem pakar ini sebesar 90% berdasarkan akurasi yang telah dilakukan terhadap 10 data uji. Hasil tersebut menunjukkan bahwa diagnosis yang dihasilkan dari sistem pakar mempunyai hasil yang sejalan dengan diagnosis pakar.
Implementation of Machine Learning Model to Detect Sign Language Movement in SIBI Learning Media Fitriani, Leni; Kurniadi, Dede; Rajab, Ilham Syahidatul
Teknika Vol. 14 No. 1 (2025): March 2025
Publisher : Center for Research and Community Service, Institut Informatika Indonesia (IKADO) Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34148/teknika.v14i1.1159

Abstract

This research focuses on the development of a web-based Indonesian Sign Language System (SIBI) learning application with motion detection to improve the precision of sign language practice. Despite the government's introduction of SIBI as an official system, existing platforms lack tools to validate the accuracy of hand movements. Using the Design Sprint methodology—comprising Understand, Define, Sketch, Decide, Prototype, and Validate phases—this study employs Microsoft Azure Machine Learning to create a motion detection model capable of recognizing SIBI gestures. The application offers an interactive learning experience, allowing users to practice and receive real-time feedback on their accuracy. Initial trials demonstrated high prediction accuracy, achieving 99.82% on public datasets and 96.4% on private datasets. Beta testing revealed an 86% satisfaction rate among users, indicating the application’s effectiveness in enhancing the learning process. By providing accessibility through standard web browsers and incorporating advanced motion detection, this application contributes to inclusivity, facilitating broader public understanding and interest in learning sign language.
Co-Authors Abania, Nia Abdulah, Farhan Naufal Abdurrahman, Fauzan Abdussalam, Iqbal Abdussalam Abdusy Syakur Amin Ade Sutedi Ade Sutedi Ade Sutedi, Ade Adiwangsa, Alfian Akmal Agus Hermawan Agus Nugraha Agustiansyah, Yoga Ahmad Habib Lutfi Aisyah Fitri Islami Ajif, Arvin Muhammad Ajiz, Rafi Nurkholiq Akbar, Gugun Geusan Alamsyah, Renaldy Aldy Rialdy Atmadja Ali Djamhuri Alisha Fauzia, Fathia Alkamal, Chaerulsyah Alvin Zainal Musthafa Alwan Nul Hakim Amrulloh, Muhammad Fawaz Andri Saepuloh Aneu Suci Nurjanah Asri Indah Pertiwi Asri Mulyani Asri Rahayu Ningsih Ayu Suryani B. Balilo Jr , Benedicto B. Balilo Jr, Benedicto Balilo Jr, Benedicto B. Barlinti Maryam Budik Burhanuddin, Ridwan Cahya Mutiara Dede Sopiah Della Adelia Anugrah Detila Rostilawati Dewi Tresnawati Dhea Arynie Noor Annisa Diar Nur Rizky Diaz Radhian Salam Diazki, Moch Haiqal Diki Jaelani Dini Destiani Siti Fatimah Diva Nuratnika Rahayu Dudy Mohammad Arifin Dyka Afan Afthori Dzikri Nursyaban Efi Sofiah Elsen, Rickard Eri Satria Erick Fernando B311087192 Erwan Yani Erwan Yani, Erwan Erwin Gunadhi Rahayu, Raden Erwin Widianto Fadillah, Hadi Bagus Faisal, Ridwan Nur Fajar Rahman Faturrohman, Nadhif Fauziah, Fathia Alisha Fauziyah, Asyifa Fikri Zakaria Rahman Firmansyah, Marshal Fitri Nuraeni Fitriani, Ranti Fitriyani Gelar Panca Ginanjar Ghilman Hasbi Basith Gisna Fauzian Dermawan H. Bunyamin Hadi Wijaya, Tryana Haekal, Mohamad Fikri Hamzah Nurrifqi Fakhri Fikrillah Hari Ilham Nur Akbar Hasfi Syahrul Ramadhan Hazar, Aura Fitria Helmalia P, Nabilla Febriani Hendri Aji Pangestu Heri Johari Heri Suhendar Heri Suhendar Hilmi Aulawi Ida Farida Ikbal Lukmanul Hakim Ikhrom, Taufik Darul Ikmal Muhammad Fadhil Ilham Muhamad Ramdan Imas Dewi Ariyanti Inda Muliana Indra Trisna Raharja Indri Tri Julianto Indri Tri Julianto Intan Sri Fatmalasari Irawan, Muhammad Randy Irfan Qusaeri Irfanov, Muhammad Irsyad Ahmad Iskandar, Joko Jajang Jaenudin Jajang Romansyah Jembar, Tegar Hanafi Khaerunisa, Nisrina Khoerunisa, Sarah Kusmayadi, Kusmayadi Latif, A. Abdul Latifah, Ayu Leni Fitriani Leni Fitriani, Leni Lia Amelia Lindayani, Lindayani M. Mesa Fauzi Mahendra Akbar Musadad Maulana , Muhammad Arief Maulana, Ahmad Rakha Maulana, Ilham Ahmad Maulana, Yusep Maulina, Wina Senja Meta Regita Mochamad Deni Ramdani Muhamad Solihin Muhammad Abdul Yusup Hanifah Muhammad Affan Al Sidqi Muhammad Rikza Nashrulloh Muhammad Saleh Muhammad Sanusi Muhammad Wildan Muliana, Inda Muttaqin, Moch Riefky Chaerul Nita Nurliawati Nugraha, M Aldi Nugraha, Nikolas Pranata Nurfadillah, Rifa Sri Nurhaliza, Nabila Putri Nurlisina, Elisa Nurpatmah, Lisna Nursa'diah, Rifania Sapta Nursyaban, Dzikri Nurul Fauziah Nurul Khumaida Nurzaman, Muhammad Zein Omar Komarudin Pratama, Reifalga Gais Prayoga, Moch. Gumelar Putri, Mita Hidayani Raharja, Indra Trisna Rahayu, Diva Nuratnika Rahayu, Raden Erwin Gunadhi Rahmat, Agil Rahmi, Murni Lestari Rajab, Ilham Syahidatul Ramdhan, Dekha Ramdhani Hidayat Randy Wardan Ridwan Setiawan Ridwan Setiawan Ridwan Setiawan Ridwan Setiawan Rifky Muhammad Shidiq Rinda Cahyana Rinda Cahyana Risfiyanisa Fasha Rizki Fauziah Roeri Fajri Firdaus Rohman, Fauza Rohmanto, Ricky Rostina Sundayana Rubi Setiawan Rudi Sutrio Safei P, M Iqbal Ismail Sarah Khoerunisa Sermana, Elsa Maharani Sheny Puspita Indriyani Siti Rima Fauziyah Sofwan Hamdan Fikri Sopiah, Dede Sri Intan Multajam Sri Mulyani Lestari Sri Rahayu SRI RAHAYU Sri Rahayu Syahrul Sidiq Syaiffani, Moch Assami Tina Maryana Undang Indrajaya W, Faksi Ahmad Wahidah, Tania Agusviani Wiwit Septiani Yanti Sofiyanti Yayat Supriatna Yoga Handoko Agustin Yosep Septiana Yosep Septiana Yuni Yuliani Yusfar Ilhaqul Choer Yusuf Mauluddin Zaqiah, Neng Nufus Zulkarnaen, Ade Iskandar