p-Index From 2020 - 2025
8.003
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering Sainteks Jurnal Ilmu Komputer dan Informasi Jurnal Teknik Elektro Jurnal Edukasi dan Penelitian Informatika (JEPIN) Prosiding Semnastek Semesta Teknika Suhuf Jurnal Ilmiah KOMPUTASI Knowledge Engineering and Data Science Wikrama Parahita : Jurnal Pengabdian Masyarakat Jurnal Pilar Nusa Mandiri Indonesian Journal of Information System Dinamisia: Jurnal Pengabdian Kepada Masyarakat JMM (Jurnal Masyarakat Mandiri) Justek : Jurnal Sains Dan Teknologi CARADDE: Jurnal Pengabdian Kepada Masyarakat JPPM (Jurnal Pengabdian dan Pemberdayaan Masyarakat) Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton Infotekmesin Journal of Information Systems and Informatics RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi JIKA (Jurnal Informatika) Community Empowerment Journal of Telecommunication, Electronics and Control Engineering (JTECE) Insearch: Information System Research Journal KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika Jurnal Nasional Teknik Elektro dan Teknologi Informasi Jutech: Jurnal Teknologi Informasi Malcom: Indonesian Journal of Machine Learning and Computer Science J-Icon : Jurnal Komputer dan Informatika Science and Technology: Jurnal Pengabdian Masyarakat Journal of Informatics and Information Security Prosiding SeNTIK STI&K Sasambo: Jurnal Abdimas (Journal of Community Service) RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi
Claim Missing Document
Check
Articles

Optimasi Deep Learning untuk Prediksi Saham di Masa Pandemi Covid-19 Hastomo, Widi; Karno, Adhitio Satyo Bayangkari; Kalbuana, Nawang; Nisfiani, Ervina; ETP, Lussiana
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 7, No 2 (2021): Volume 7 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v7i2.47411

Abstract

Penelitian ini bertujuan untuk meningkatkan akurasi dengan menurunkan tingkat kesalahan prediksi dari 5 data saham blue chip di Indonesia. Dengan cara mengkombinasikan desain 4 hidden layer neural nework menggunakan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU). Dari tiap data saham akan dihasilkan grafik rmse-epoch yang dapat menunjukan kombinasi layer dengan akurasi terbaik, sebagai berikut; (a) BBCA dengan layer LSTM-GRU-LSTM-GRU (RMSE=1120,651, e=15), (b) BBRI dengan layer LSTM-GRU-LSTM-GRU (RMSE =110,331, e=25), (c) INDF dengan layer GRU-GRU-GRU-GRU (RMSE =156,297, e=35 ), (d) ASII dengan layer GRU-GRU-GRU-GRU (RMSE =134,551, e=20 ), (e) TLKM dengan layer GRU-LSTM-GRU-LSTM (RMSE =71,658, e=35 ). Tantangan dalam mengolah data Deep Learning (DL) adalah menentukan nilai parameter epoch untuk menghasilkan prediksi akurasi yang tinggi.
GESTURE RECOGNITION FOR PENCAK SILAT TAPAK SUCI REAL-TIME ANIMATION Widi Hastomo
Jurnal Ilmu Komputer dan Informasi Vol 13, No 2 (2020): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1011.872 KB) | DOI: 10.21609/jiki.v13i2.855

Abstract

The main target in this research is a design of a virtual martial arts training system in real-time and as a tool in learning martial arts independently using genetic algorithm methods and dynamic time warping. In this paper, it is still in the initial stages, which is focused on taking data sets of martial arts warriors using 3D animation and the Kinect sensor cameras, there are 2 warriors x 8 moves x 596 cases/gesture = 9,536 cases. Gesture Recognition Studies are usually distinguished: body gesture and hand and arm gesture, head and face gesture, and, all three can be studied simultaneously in martial arts pencak silat, using martial arts stance detection with scoring methods. Silat movement data is recorded in the form of oni files using the OpenNI ™ (OFW) framework and BVH (Bio Vision Hierarchical) files as well as plug-in support software on Mocap devices. Responsiveness is a measure of time responding to interruptions, and is critical because the system must be able to meet the demand.
Diagnosa COVID-19 Chest X-Ray Dengan Convolution Neural Network Arsitektur Resnet-152 Widi Hastomo; Adhitio Bayangkari Satyo Karno
KERNEL: Jurnal Riset Inovasi Bidang Informatika dan Pendidikan Informatika Vol 2, No 1 (2021)
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (812.148 KB) | DOI: 10.31284/j.kernel.2021.v2i1.1884

Abstract

The availability of medical aids in adequate quantities is very much needed to assist the work of the medical staff in dealing with the very large number of Covid patients. Artificial Intelligence (AI) with the Deep Learning (DL) method, especially the Convolution Neural Network (CNN), is able to diagnose Chest X-ray images generated by the Computer Tomography Scanner (C.T. Scan) against certain diseases (Covid). Resnet Version-152 architecture was used in this study to train a dataset of 10.300 images, consisting of 4 classifications namely covid, normal, lung opacity with 3,000 images each and viral pneumonia 1,000 images. The results of the study with 50 epoch training obtained very good values for the accuracy of training and validation of 95.5% and 91.8%, respectively. The test with 10.300 image dataset obtained 98% accuracy testing, with the precision of each class being Covid (99%), Lung_Opacity (99%), Normal (98%) and Viral pneumonia (98%). 
Pemanfaatan Sampah Rumah Tangga dan Pasar sebagai Upaya Peningkatan Kesejahteraan Keluarga Yayat Sujatna; Widi Hastomo
JPPM (Jurnal Pengabdian dan Pemberdayaan Masyarakat) VOL. 5 NOMOR 1 MARET 2021 JPPM (Jurnal Pengabdian dan Pemberdayaan Masyarakat)
Publisher : Lembaga Publikasi Ilmiah dan Penerbitan (LPIP)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.313 KB) | DOI: 10.30595/jppm.v5i1.5853

Abstract

Jakarta memproduksi sekitar 7.700 ton sampah setiap harinya. Dari jumlah tersebut, sekitar 4.900 hingga 5.000 ton merupakan sampah organik. Rumah tangga dan pasar tradisional menjadi penghasil limbah yang produktif. Sampah organik yang dihasilkan dapat dikurangi dengan pemanfaatan menjadi pupuk organik cair(POC) yang bernilai jual tinggi. Pembentukan kelompok wirausaha mandiri bertujuan agar aktif membantu dalam mengurangi masalah sampah dengan dijadikan POC yang benilai jual tinggi serta peningkatan kesejahteraan keluarga. Mitra yang terlibat dalam kegiatan pengabdian kepada masyarakat (abdimas) ini yaitu kelompok ibu-ibu wirausaha mandiri warga RW 01 Tegal Alur Jakarta Barat. Metode yang digunakan yaitu Partisipatory Rural Apprasial (PRA), sebuah metode pada proses peningkatan partisipasi dan pemberdayaan masyarakat, dalam hal ini masyarakat ikut terlibat aktif pada seluruh kegiatan. Hasil dari program abdimas yaitu: 1)Meningkatnya pemahaman mitra tentang pembuatan POC dan kompos; 2)adanya hasil POC dan kompos; 3)meningkatkan pengetahuan dan kemampuan kelompok mitra dalam penerapan teknologi dan pengetahuan pada pengolahan sampah menjadi POC dan kompos; 4)mitra mampu memasarkan pupuk organik cair dan kompos baik secara offline maupun online; dan 5) meningkatnya pendapatan mitra dari hasil penjualan pupuk organik cair dan kompos; serta 6) meningkatnya kesadaran tentang dampak sampah yang timbul tanpa melalui proses daur ulang.
Edukasi Perencanaan Keuangan Bagi Calon Pemagang ke Jepang Eko Ahmad; Widi Hastomo
CARADDE: Jurnal Pengabdian Kepada Masyarakat Vol. 3 No. 1 (2020): Agustus
Publisher : Ilin Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31960/caradde.v3i1.483

Abstract

This community service aims to provide planning training to Japanese champions so that later they can manage their finances in accordance with their individual financial goals. Educational participants are prospective Japanese apprentices. Totaling participants are 40 participants who are divided into 2 classes. The method in this activity is in the form of education as well as training. Educational methods include providing material that is about financial literacy, financial planning, financial goals, and business introduction. The Training Method includes participants directly doing the practice by filling out the worksheets provided in accordance with the material provided. Financial literacy test results increased by 35%, financial planning increased by 35%, financial goals increased by 25%, business introduction increased by 25%. For the evaluation of activities 85% of respondents (participants and LPK Bangkit staffs) responded positively to this activity the rest needs to be corrected regarding the large amount of material and the short time. Overall, this activity ran smoothly and provided positive benefits for the participants and Bangkit LPK.  
Mengatasi Ketimpangan Data Deep Neural Network dengan Pelipatan Fitur Data Klasifikasi Spektroskopi Darah Widi Hastomo; Adhitio Satyo Bayangkari Karno; Sutarno Sutarno; Dodi Arif; Eka Sally Moreta; Sudjiran Sudjiran
Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton Vol 8 No 2 (2022): Sang Pencerah: Jurnal Ilmiah Universitas Muhammadiyah Buton
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat Universitas Muhammadiyah Buton

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1673.005 KB) | DOI: 10.35326/pencerah.v8i2.2251

Abstract

Permasalahan utama dalam penelitian ini adalah ketimpangan data masukan menghasilkan dampak negatif yang signifikan terhadap hasil prediksi dari model Deep Neural Network (DNN). Kemampuan klasifikasi DNN sangat akurat hanya untuk dataset yang berimbang, namun DNN pada awalnya tidak di rancang untuk menangani ketimpangan data. Ketimpangan data merupakan hal yang sering dijumpai dalam dunia nyata, menjadikan ini sebagai tantangan besar dalam prediksi klasifikasi menggunakan model DNN. Penelitian ini berfokus untuk memprediksi tingkat kandungan kolesterol tinggi, kolesterol rendah dan hemoglobin, menggunakan data kasus di kompetisi Zindi Blood Spectroscopy Classification Challenge. Dengan melakukan analisa data, cleansing outlier, fine tunning, model neural network, jaringan pengelompokan data target dengan kategori sejenis, urutan pemrosesan, pemilihan nilai pelipatan (7 pelipatan) yang tepat terhadap data input train dan data test serta epoch 60, dapat meningkatkan hasil nilai score prediksi yang cukup tinggi sebesar 0.94594.
Daur Ulang Air Leri Dalam Mengurangi Limbah Rumah Tangga Aminudin; Widi Hastomo; Fiedha Nasution
Dinamisia : Jurnal Pengabdian Kepada Masyarakat Vol. 5 No. 5 (2021): Dinamisia: Jurnal Pengabdian Kepada Masyarakat
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/dinamisia.v5i4.3907

Abstract

This community service aims to educate the community in Bambu Apus Pamulang to be more concerned about waste. Households are productive producers of waste, household waste water can be used as liquid organic fertilizer for hydroponic plants, the water content of leri is nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, and vitamin B1. Hydroponics is considered suitable for urban communities, because it does not require a large place, is relatively safe from insects and the harvest period can be controlled, the results are expected to be able to meet the nutritional needs of households with organic vegetables. These community service activities are carried out so that the community is aware of the importance of protecting the environment, starting with simple matters, providing information that households are able to process and utilize leri's waste water, and finally teaching the community members how to grow hydroponic vegetables to ensure the nutrition of families with organic vegetables independently.
Metode Pembelajaran Mesin untuk Memprediksi Emisi Manure Management Widi Hastomo; Nur Aini; Adhitio Satyo Bayangkari Karno; L.M. Rasdi Rere
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 11 No 2: Mei 2022
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1778.055 KB) | DOI: 10.22146/jnteti.v11i2.2586

Abstract

Indonesia is committed to reducing greenhouse gas (GHG) emissions through a nationally determined contribution (NDC) scheme. The target to reduce GHG emissions is 29% through the business as usual (BAU) scheme or 41% with international aid. These ambitious targets require transformations in energy, food, and land-use systems, which need to cope with the potential trade-offs among many targets, such as food security, energy security, avoided deforestation, biodiversity conservation, land use competition, and freshwater use. Mitigation and adaptation have complementary roles in responding to climate change at both temporal and spatial scales. This paper aims to perform simulations and predictions on manure management emissions producing CO2eq using machine learning methods of long short-term memory (LSTM) and gated recurrent unit (GRU). The hidden layer architecture used was six combinations, while the dataset was obtained from the fao.org repository. The optimizer used in this paper was RMSprop, with a graphical user interface using the Streamlit dashboard. The results of this study are (a) cattle with fifteen epochs using hidden layer four combinations (LSTM, GRU, LSTM, GRU) yielded RMSE 450,601; (b) non-dairy cattle with fifteen epochs and one hidden layer (GRU, GRU, GRU, GRU) yielding RMSE 361.421; (c) poultry birds with twelve epoch values and three hidden layers (GRU, GRU, LSTM, LSTM) resulted in an RMSE value of 341.429. The challenges faced were the determination of epochs, the combination of hidden layers, and the characteristics of the relatively small number of datasets. The results of this study are expected to provide added value for developing better decision support tools and models to assess emission trends in the livestock sector and develop CO2eq emission mitigation strategies that lead to sustainable fertilizer management practices.
Social media training as a marketing tool for micro-enterprises Widi Hastomo; Ahmad Eko Saputro; Yoga Rarastro Putra
Community Empowerment Vol 7 No 3 (2022)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (426.304 KB) | DOI: 10.31603/ce.6252

Abstract

Covid-19 has had a significant economic impact; MSMEs, which were so powerful during the 1998 economic crisis, were forced to abandon their operations during this pandemic. They must make mass layoffs in order to increase efficiency, without even providing severance pay to their employees. CV Sarana Teknik, which works in the furniture industry, had to lay off 93 percent of its employees due to a drop in turnover. The objective of the program is to provide digital marketing strategy counseling, training, and practice in the areas of interactive advertising content creation and ad management using the Facebook Ads Manager. The program is used a community development approach. This program broadened partners' understanding of digital marketing, particularly the use of Facebook ads and WhatsApp broadcasts. Despite the fact that the use of Facebook ads is still not optimal, sales turnover has increased in three months, particularly for innovative products such as dispenser mats.
Exloratory Data Analysis Untuk Data Belanja Pelanggan dan Pendapatan Bisnis Widi Hastomo; Adhitio Satyo Bayangkari Karno; Sudjiran; Dodi Arif; Eka Sally Moreta
Infotekmesin Vol 13 No 2 (2022): Infotekmesin: Juli, 2022
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v13i2.1547

Abstract

A more quantifiable perspective is assuming the role of mechanistic management in an effort to enhance business based on its capacity to transform data into knowledge and insight. The industry has not completely supported its business strategy also with driven data. Using a transaction dataset taken from one of the Kaggle.com challenges, this experiment attempts to determine consumer spending patterns and Retail Fashion business revenues (H&M Personalized Fashion Recommendations). The results of the experiment are the number of transactions based on customer age, the most sales product and one-time purchased item, and the type of product that generates the highest and smallest income. The approach employed is EDA using the Python language. In order for businesses to generate analytical findings that provide future perspectives and to help identify the gap by delivering analytical results in the form of suggestions that can be perpetuated, the findings of this experiment are intended to support the capabilities of simulation. The challenge in this experiment is the abundance of datasets, which necessitates a suitable operating environment.
Co-Authors Adhitio Bayangkari Satyo Karno Adhitio Satyo Adhitio Satyo Bayangkari Karno Adhitio Satyo Bayangkari Karno Adhitio Satyo Bayangkari Karno Agita Tunjungsari Ahmad Eko Saputro Ahmad Eko Saputro Ahmad Eko Saputro Aji Digdoyo Aji Digdoyo Ambardi Ambardi Ambardi Ambardi Ambardi, Ambardi Aminudin Arif, Dody Aryo Nur Utomo Asy-Syifa, Zahwa Zia Azis, Nur Bakti, Indra Bayangkari Karno, Adhitio Satyo Chufran, Indra Bakti Daruningsih, Kukuh Deon Strydom Deswandi, Arief Diana Yusuf Digdoyo, Aji Dodi Arif Dodi Arif Dody Arif Eka Sally Moreta Eko Ahmad Eko Ahmad Eko Hadiyanto Elliya Sestri Eva Karla, Eva Fahrul Razi Fahrul Razi Faqihudin Faqihudin Fiedha Nasution Fiqhri, Zul Fitriyani Fitriyani Handayani, Sri Setya Harini Agusta Holmes Rolandy Kapuy Hudaa, Syihaabul Ignatius Joko Dewanto, Ignatius Joko Indra Bakti Indra Sari Kusuma Wardhana Indra Sari Kusuma Wardhana Indra Sari Kusuma Wardhana Ire Puspa Wardhani Iwan Setiawan Kalbuana, Nawang Kamilia, Nada Kardian, Aqwam Rosadi Karno, Adhitio Satyo Bayangkari Kasoni, Dian Kusuma Wardhana, Indra Sari Linda Wahyu Widianti LM Rasdi Rere LM Rasdi Rere Lody Saladin Basri Lussiana ETP Lyscha Novitasari Maeda, Serly Masriyanda, Masriyanda Meika Syahbana Rusli Muhammad Mardani, Muhammad Nada Kamilia Nada Kamilia Nada Kamilia Nani Kurniawati Nia Yuningsih Nia Yuningsih Nisfiani, Ervina Nur Aini Nurhidayati, Aulia Popong Setiawati Putra, Yoga Rarasto Putri , Basmallah Ramadhani Aisyah Putri, Dhea Ananda Rahman, Ibadu Rasyiddin, Ahmad Rere, L.M Rasdi Reza Fitriansyah Reza Fitriansyah Rudy Yulianto Rudy Yulianto Saputro, Ahmad Eko Sestri, Elliya Sestri, Ellya Setiawati, Popong Shevti Arbekti Arman Soegijanto Soegijanto Soleha, Maratus Stevianus Stevianus Sudarto Usuli Sudarwanto, Pantja Sudjiran Sukardi, Sukardi Sundoro, Aries Surawan, Tri Sutarno Sutarno Sutarno Sutarno Sutarno Syamsu, Muhajir Syihaabul Hudaa Tri Surawan Tri Surawan Vany Terisia Wardhana , Indra Sari Kusuma Yayat Sujatna Yayat Sujatna Yayat Sujatna, Yayat Yoga Rarasto Putra Yoga Rarasto Putra Yoga Rarastro Putra Yulianti Muthmainnah, Yulianti Yuningsih, Nia Yusuf Yusuf YUSUF, DIANA