This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Teknologi Dan Industri Pangan Jurnal Pustakawan Indonesia ComEngApp : Computer Engineering and Applications Journal Journal of Tropical Life Science : International Journal of Theoretical, Experimental, and Applied Life Sciences TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmu Komputer dan Agri-Informatika Jurnal Ilmiah Kursor Biogenesis: Jurnal Ilmiah Biologi Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Indonesian Journal of Biotechnology Seminar Nasional Informatika (SEMNASIF) Sosio Konsepsia Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Teknologi dan Sistem Komputer INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi Jurnal Penelitian Pendidikan IPA (JPPIPA) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control ILKOM Jurnal Ilmiah Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika Jurnal Jamu Indonesia Journal of Electronics, Electromedical Engineering, and Medical Informatics VISI PUSTAKA: Buletin Jaringan Informasi Antar Perpustakaan JURNAL Al-AZHAR INDONESIA SERI SAINS DAN TEKNOLOGI Indonesian Journal of Electrical Engineering and Computer Science Nusantara Science and Technology Proceedings Bioinformatics and Biomedical Research Journal Jurnal Pustakawan Indonesia Jurnal Nasional Teknik Elektro dan Teknologi Informasi J-Icon : Jurnal Komputer dan Informatika Indonesian Journal of Jamu
Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Jurnal Ilmu Komputer dan Agri-Informatika

Klasifikasi Metagenom dengan Metode Naïve Bayes Classifier Utami, Dian Kartika; Kusuma, Wisnu Ananta; Buono, Agus
Jurnal Ilmu Komputer dan Agri-Informatika Vol 3, No 1 (2014)
Publisher : Departemen Ilmu Komputer IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1294.449 KB)

Abstract

Studi metagenom merupakan langkah penting pada pengelompokan taksonomi. Pengelompokan pada metagenom dapat dilakukan dengan menggunakan metode binning. Binning diperlukan untuk mengelompokkan contigs yang dimiliki oleh masing-masing kelompok spesies filogenetik. Pada penelitian ini, binning dilakukan dengan menggunakan pendekatan komposisi berdasarkan supervised learning (pembelajaran dengan contoh). Metode supervised learning yang digunakan yaitu Naïve Bayes Classifier. Adapun metode yang digunakan untuk ekstraksi ciri adalah dengan melakukan perhitungan frekuensi k-mer. Klasifikasi pada metagenom dilakukan berdasarkan tingkat takson genus. Dari proses klasifikasi yang dilakukan, akurasi yang diperoleh dengan menggunakan fragmen pendek (400 bp) adalah 49.34 % untuk ekstraksi ciri 3-mer dan 53.95 % untuk ekstrasi ciri 4-mer. Sementara itu, untuk fragmen panjang (10 kbp), akurasi mengalami peningkatan yaitu 82.23 % untuk ekstraksi ciri 3-mer dan 85.89 % untuk esktraski ciri 4-mer. Dari hasil tersebut dapat disimpulkan bahwa akurasi semakin tinggi seiring dengan semakin panjangnya ukuran fragmen. Selain itu, penelitian ini juga menyimpulkan bahwa metode ekstrasi ciri yang memberikan hasil paling maksimal adalah dengan menggunakan ekstraksi ciri 4-mer.Kata Kunci: metagenom, k-mer, Naïve Bayes Classifier, binning, klasifikasi
Klasifikasi Metagenom dengan Metode Naïve Bayes Classifier Dian Kartika Utami; Wisnu Ananta Kusuma; Agus Buono
Jurnal Ilmu Komputer & Agri-Informatika Vol. 3 No. 1 (2014)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1294.449 KB) | DOI: 10.29244/jika.3.1.9-17

Abstract

Studi metagenom merupakan langkah penting pada pengelompokan taksonomi. Pengelompokan pada metagenom dapat dilakukan dengan menggunakan metode binning. Binning diperlukan untuk mengelompokkan contigs yang dimiliki oleh masing-masing kelompok spesies filogenetik. Pada penelitian ini, binning dilakukan dengan menggunakan pendekatan komposisi berdasarkan supervised learning (pembelajaran dengan contoh). Metode supervised learning yang digunakan yaitu Naïve Bayes Classifier. Adapun metode yang digunakan untuk ekstraksi ciri adalah dengan melakukan perhitungan frekuensi k-mer. Klasifikasi pada metagenom dilakukan berdasarkan tingkat takson genus. Dari proses klasifikasi yang dilakukan, akurasi yang diperoleh dengan menggunakan fragmen pendek (400 bp) adalah 49.34 % untuk ekstraksi ciri 3-mer dan 53.95 % untuk ekstrasi ciri 4-mer. Sementara itu, untuk fragmen panjang (10 kbp), akurasi mengalami peningkatan yaitu 82.23 % untuk ekstraksi ciri 3-mer dan 85.89 % untuk esktraski ciri 4-mer. Dari hasil tersebut dapat disimpulkan bahwa akurasi semakin tinggi seiring dengan semakin panjangnya ukuran fragmen. Selain itu, penelitian ini juga menyimpulkan bahwa metode ekstrasi ciri yang memberikan hasil paling maksimal adalah dengan menggunakan ekstraksi ciri 4-mer.Kata Kunci: metagenom, k-mer, Naïve Bayes Classifier, binning, klasifikasi
Pengembangan Sistem Manajemen Pengetahuan Tumbuhan Obat Indonesia Berbasis Ontologi Syukriyansyah; Wisnu Ananta Kusuma; Annisa
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 10 No. 2 (2023)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.10.2.147-163

Abstract

Pengetahuan tumbuhan obat oleh masyarakat atau etnis lokal untuk penyakit atau gejala tertentu telah berperan penting dalam penemuan beberapa obat berharga yang telah digunakan secara turun-temurun selama bertahun-tahun. Selain itu, banyak sumber pengetahuan tumbuhan obat Indonesia yang heterogen dan terpisah-pisah sehingga sangat penting untuk mengintegrasikannya. Oleh karena itu, sangat penting untuk mengembangkan sistem manajemen pengetahuan (KMS) yang dapat menyimpan, mengelola, berbagi, dan merepresentasikan pengetahuan tumbuhan obat Indonesia sehingga dapat dibagikan, digunakan kembali, dan dimanfaatkan dalam kesehatan Indonesia. Penelitian ini menggunakan ontologi sebagai pola dalam membangun grafik pengetahuan dengan menggunakan basis data graf Neo4j dan kueri Chyper untuk melakukan penalaran pengetahuan berbasis graf. Penalaran pengetahuan berbasis graf digunakan untuk memperoleh pengetahuan terkait. Ontologi dibangun berdasarkan konsep kunci dalam pengobatan tradisional kemudian dipadukan dengan ontologi penyakit (DO) untuk mengatasi kesenjangan antara istilah pemanfaatan tumbuhan tradisional dan istilah medis serta memperkaya pengetahuan kedokteran Indonesia. Sumber data yang digunakan untuk membangun ontologi antara lain adalah Laporan Nasional Eksplorasi Pengetahuan Lokal Etnomedisin dan Tumbuhan Obat di Indonesia Berbasis Komunitas, integreted Digitized Biocollections (iDigBio), Global Biodiversity Information Facility (GBIF), Disease Ontology (DO), Basis Data Tanaman Obat Indonesia (HerbalDB), Dr. Duke’s Phytochemical and Ethnobotanical Databases (Dr. Duke’s), Indian Medicinal Plants, Phytochemystry and Teurapeutics (IMPPAT), Collection of Open Natural Products (COCONUT), KNApSAcK, BioGRID, DisGeNET, dan Side Effect Resource (SIDER). Sistem dikembangkan dengan arsitektur REST API yang terdiri dari front-end (klien) dan back-end (server). Klien memiliki dua sistem utama, yaitu pencarian pengetahuan dan manajemen pengetahuan.
Implementasi Pendekatan Algoritma Deep Learning CNN untuk Identifikasi Citra Pasien Keratitis Agmalaro, Muhammad Asyhar; Kusuma, Wisnu Ananta; Rif’ati, Lutfah; Pramita Andarwati; Anton Suryatama; Rosy Aldina; Hera Dwi Novita; Ovi Sofia
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 10 No. 2 (2023)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.10.2.164-175

Abstract

The incidence of keratitis globally ranges from 0.4 to 5.2 per 10,000 people annually. Keratitis can only be identified by an ophthalmologist using a slitlamp as a fundamental instrument for specific eye examination in secondary care facilities. In primary care facilities, eye specialists and slitlamps are not available. This causes delay in the diagnosis and treatment of keratitis patients in public health centers or areas with limited facilities and access to doctors/ophthalmologists. This research aims to develop a keratitis identification model using the convolutional neural network (CNN) method and training data consisting of images produced by smartphones and combined with slitlamp images. The training accuracy of the developed model is 92% with a dropout layer set at 0.3, and the average validation accuracy is 83%, indicating that the model training did not experience overfitting. The testing results with new data achieved an accuracy of 90%. Next, the parameters of the best model will be integrated into an application running on the Android operating system. However, the application’s functionality and UX/UI performance need to be improved to facilitate seamless use of the model.
Kecerdasan Buatan untuk Monitoring Hama dan Penyakit pada Tanaman Eucalyptus: Systematic Literature Review Nasution, Tegar Alami; Yeni Herdiyeni; Wisnu Ananta Kusuma; Budi Tjahjono; Iskandar Zulkarnaen Siregar
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 10 No. 2 (2023)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.10.2.224-237

Abstract

Eucalyptus plants, renowned for their economic and environmental significance, are cultivated globally. Despite their value, these plants are vulnerable to pest and disease attacks, impacting productivity and quality. Accurate and timely monitoring is required to control pests and diseases in eucalyptus plants. The conventional method of human-based direct observation for monitoring pests and diseases in eucalyptus plants is fraught with weaknesses. Therefore, efforts are needed to enhance the effectiveness and efficiency of monitoring pests and diseases in eucalyptus plants through artificial intelligence or AI technology. AI is used to automatically detect and classify pests and diseases in eucalyptus plants using machine learning or deep learning algorithms and image processing. This study aims to provide a comprehensive review of the use of AI for detecting pests and diseases in eucalyptus plants using the Systematic Literature Review (SLR) method. Through this approach, this study identifies, evaluates, and analyzes relevant literature on the research topic from various digital sources. This study also provides an overview of the latest developments, methods used, and results achieved, as well as challenges and opportunities in the field of AI research for detecting pests and diseases in eucalyptus plants.
SAE-DNN-GA: Sebuah Pendekatan Klasifikasi Multilabel dalam Prediksi Senyawa Herbal Potensial Untuk Penyakit COVID-19 Wijaya, Eko Praja Hamid; Kusuma, Wisnu Ananta; Wijaya, Sony Hartono
Jurnal Ilmu Komputer dan Agri-Informatika Vol. 11 No. 2 (2024)
Publisher : Departemen Ilmu Komputer, Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jika.11.2.111-121

Abstract

COVID-19 adalah penyakit dengan laju penyebaran yang tinggi. Percepatan proses penemuan obat untuk penyakit tersebut sangat dibutuhkan. Penggunaan kembali obat (drug repurposing) merupakan salah satu alternatif dalam pengembangan dan penemuan obat dengan biaya murah serta waktu yang singkat. Tanaman herbal dapat digunakan sebagai obat dengan khasiat yang lebih baik, efek samping yang lebih sedikit, dan lebih murah. Prediksi interaksi obat-target dan penggunaan kembali obat dapat digunakan untuk mengeksplorasi senyawa herbal potensial. Penelitian ini mengatasi kelemahan klasifikasi biner dengan model DSSL-DTI (Deep Semi Supervised Learning-Drug Target Interaction) yang dioptimasi menggunakan Algoritma Genetika. Tujuan penelitian ini adalah mendeteksi kemungkinan adanya hubungan antar label menggunakan pendekatan klasifikasi multilabel dengan model yang dioptimasi. Data yang digunakan penelitian ini antara lain: data protein, data interaksi senyawa-protein, dan data senyawa herbal. Data protein diperoleh dari situs GeneCards yang berisi kumpulan protein yang berasosiasi dengan COVID-19 dan ditemukan pada manusia. Data interaksi senyawa-protein diperoleh dari situs DrugBank dan SuperTarget. Adapun data senyawa herbal diperoleh dari HerbalDB. Hasil penelitian menunjukkan bahwa dengan menggunakan model SAE-DNN-GA yang diusulkan, prediksi senyawa herbal menghasilkan sepuluh senyawa yang berinteraksi dengan dua protein bernilai relevansi tertinggi, yaitu protein INS (7.094) dan ALB (3.178). Hasil ini diharapkan mampu meningkatkan hasil prediksi kandidat senyawa herbal sebagai obat penyakit COVID-19 menjadi lebih akurat.
Co-Authors Abdul Aziz Abdul Rahman Saleh Agus Buono Ahmad, Tarmizi Aini Fazriani Aisah Rini Susanti Alami, Tegar Albert Adrianus Ali Djamhuri Annisa Annisa Annisa , Annisa Annisa Annisa Annisa Annisa Annisa Annisa Annisa Annisa Anton Suryatama Arini Aha Pekuwali Arini Pekuwali Arwan Subakti Ary Prabowo Auliatifani, Reza Auliya Ilmiawati Auriza Rahmad Akbar Badollahi Mustafa Badrut Tamam Bahrul Ulum Budi Tjahjono BUDI TJAHJONO Dahrul Syah Diah Handayani Dian Indah Savitri Dian Kartika Utami Essy Harnelly Fadli , Aulia Fahrury Romdendine, Muhammad Farhan Ramadhani , Hilmi Farit Mochamad Afendi Farohaji Kurniawan Fatriani, Rizka Fazriani, Aini Firman Ardiansyah Halida Ernita Handayani, Vitri Aprilla Hanifah Nuryani Lioe Hardi, Wishnu Hasibuan, Lailan Sahrina Hendra Rahmawan Hendra Rahmawan Hera Dwi Novita Heru Sukoco Imas Sukaesih Sitanggang Indra Astuti Ira Maryati Irfan Wahyudin Irma Herawati Suparto Irman Hermadi Irmanida Batubara Irvan Lewenusa ISKANDAR ZULKARNAEN SIREGAR Isnan Mulia Janti G. Sudjana Jaya Sena Turana Joni Prasetyo Kana Saputra S Kangko, Danang Dwijo Karlisa Priandana Khaydanur Khaydanur Khaydanur, Khaydanur Laela Wulansari Larasati Larasati Lina Herlina Tresnawati Listina Setyarini Lusi Agus Setiani Maggy T. Suhartono Mala Nurilmala Medria Kusuma Dewi Hardhienata Mohamad Rafi Mohamad Rafi Mohamad Rafi Mohammad Romano Diansyah Mohammad Romano Diansyah Muchlishah Rosyadah Muh Fadhil Al-Haaq Ginoga Muhammad Asyhar Agmalaro Muhammad Subianto Mulyati Mulyati Mushthofa Mushthofa Mushthofa Muttaqin, Muhammad Rafi Nabila Sekar Ramadhanti Nasution, Tegar Alami Nengsih, Nunuk Kurniati Norma Nur Azizah Nunuk Kurniati Nengsih Nur Choiriyati Nurdevi Noviana Ovi Sofia Pramita Andarwati Prihasuti Harsani Priyo Raharjo Pudji Muljono Purnajaya, Akhmad Rezki Purnomo, Tsania Firqin Ramdan Satra Ratu Mutiara Siregar Refianto Damai Darmawan Refianto Damai Darmawan Resnawati Reza Auliatifani Rif’ati, Lutfah Rizky Maulidya Afifa Ronald Marseno Rosy Aldina Rudi Heryanto SATRIYAS ILYAS Septaningsih, Dewi Anggraini Siti Syahidatul Helma Sony Hartono Wijaya Sri Nurdiati Sulistyo Basuki Sulistyo Basuki Supriyanto, Arif Syahid Abdullah Syarifah Aini Syarifah Fathimah Azzahra Syukriyansyah Taufik Djatna Toni Afandi Tsania Firqin Purnomo Usman, Muhammad Syafiuddin Wa Ode Rahma Agus Udaya Manarfa Wahjuni, Sri Widya Sari Wijaya, Eko Praja Hamid Wina Yulianti Wishnu Hardi Wulansari, Laela Yandra Arkeman Yessy Yanitasari Yudhi Trisna Atmajaya Yulianah Yulianah Yunita Fauzia Achmad Zulkarnaen, Silvia Alviani